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Abstract— Real-time dense reconstruction has been exten-
sively studied for its wide applications in computer vision and
robotics, meanwhile much effort has been made for the multi-
robot system which plays an irreplaceable role in complicated
but time-critical scenarios, e.g., search and rescue tasks. In
this paper, we propose an efficient system named Coxgraph
for multi-robot collaborative dense reconstruction in real-time.
In our system, each client performs volumetric mapping in
a producer-consumer manner. To facilitate transmission, we
propose a compact 3D representation which transforms the
SDF submap to mesh packs. During the recovery of submaps
from mesh packs, the system can perform loop closure outlier
rejection based on geometry consistency, trajectory collision
and fitness check. Then we develop a robust map fusion method
through joint optimization of trajectories and submaps. Exten-
sive experiments demonstrate that our system can produce a
globally consistent dense map in real-time with less transmission
load, which is available as open-source software 1.

I. INTRODUCTION

Reconstructing dense volumetric scenes is an important
task in the fields of computer vision and robotics, with
many applications in factory automation, search & rescue,
augmented reality [1], cultural heritage preservation [2], and
city modelling. Although existing single robot reconstruction
systems [3], [4] have shown their good performance on
online localization and mapping, they are still difficult to be
applied in large-scale scenarios such as city-level reconstruc-
tion and time-critical scanning. In view of this, we highlight
that multi-robot collaborative dense reconstruction deserves
more attention as they permit rapid exploration and higher
redundancy than a single-robot system.

Recently, some multi-robot Simultaneous Localization and
Mapping (SLAM) [5], [6] systems based on vision or LiDAR
have emerged and shown state-of-the-art performance on
inter-robot localization. However, most of them focus on
the improvement of localization and optimization of camera
poses, instead of dense mapping results. The major challenge
in practice is to exchange dense mapping data with practical
bandwidth usage. While most of existing multi-robot recon-
struction methods try to perform dense reconstruction, they
either assume high-quality network connection among clients
and focus more on task distribution and collaborative path
planning [7], or only optimize and transmit trajectories [5],
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Fig. 1: A multi-robot reconstruction result of CVG lab. The
center picture shows the global mesh generated online by
server, and the surroundings show meshes from three clients
corresponding to different regions.

[8], then adjust only local dense maps [9]. Note that none
of them can achieve a globally consistent multi-robot dense
reconstruction with limited transmission bandwidth.

To address the aforementioned problem, we propose an
efficient system for multi-robot collaborative dense recon-
struction with compact transmission data format and opti-
mization on submaps. Our proposed compact representation
can replace the heavy Signed Distance Function (SDF) map
with comparable accuracy, which can be quickly transmitted
to the server for online optimization on dense maps, achiev-
ing global consistency.

In our system, each client performs visual SLAM and SDF
reconstruction in a producer-consumer manner and integrate
SDF into submap at a fixed frequency. We then transform the
submap to a compact representation, named as mesh pack in
this work, which can fulfill low bandwidth communication.
Then we propose a trajectory query-based method to convert
the mesh pack back into submaps in the server. Experiments
show that our compressed transmission method decreases the
accuracy of original map negligibly. Based on the recovered
submaps, the system can perform SDF-based loop closure
outlier rejection and map fusion optimization.

The contributions of this paper are summarized as follows:
• We propose an efficient system named Coxgraph for

centralized multi-robot collaborative dense reconstruc-
tion in real-time.

• We present a compact transmission representation which



enables transmitting local 3D submaps with minimal
bandwidth requirement.

• Our system achieves global consistency across robots,
by extending online map fusion optimization and loop
closure correction methods.

II. RELATED WORK

We briefly review the related methods of multi-robot
SLAM and multi-robot reconstruction in this section.

A. Multi-Robot SLAM

With the development of SLAM and multi-robot systems,
the research on multi-robot SLAM has attracted more at-
tention. CoSLAM [10] presents a collaborative monocular
SLAM system to improve robustness in dynamic environ-
ments which relies on computation on GPU. As a centralized
collaborative SLAM system, CVI-SLAM presents a novel
visual-inertial framework [11] for each agent outsourcing its
computationally expensive tasks and sharing all information
with a central server. CCM-SLAM [12] presents a centralized
collaborative monocular visual SLAM system, running on
clients with small processing units. Each client only performs
feature tracking and the server collects experiences of all
clients, detects loop closures and optimizes the global poses.
In contrast, CORB-SLAM [6] uses extended ORB-SLAM2
as clients, and detects loop closure and optimizes in server.
Since its clients runs complete visual odometry, it requires
more computation capacity than the former ones. Bartolomei
et al. propose VINS-Client-Server as a module of the multi-
robot navigation architecture [13]. VINS-Client-Server ex-
tends VINS-Mono [14] as the client frontend, while its
pose graph backend collects keyframe data and detects loop
closure, similar to CVI-SLAM and CCM-SLAM. DOOR-
SLAM [8] develops a fully distributed SLAM system using
NetVLAD [15] to detect loop closure with robust outlier
rejection methods. It also introduces a communication pro-
cedure to reduce communication load by exchanging global
NetVLAD keyframe descriptors first and transmitting the
complete keyframe data only if their descriptors match.

B. Multi-Robot Reconstruction

CoScan [7] performs collaborative scanning for dense 3D
reconstruction of unknown indoor environments with the fo-
cus on task distribution and path planning. Kimera-Multi [9]
extends Kimera [16] with similar communication and outlier
rejection methods as DOOR-SLAM [8] to develop a system
for distributed multi-robot metric-semantic SLAM. They
optimize distributed pose graph and adjust local deformed
mesh. Based on Voxblox [17], Voxblox-Multi-Agent in [13]
collects voxel-filtered compressed point clouds from clients
and fuses them based on the poses of anchor keyframes. Note
that systems mentioned above basically optimize the map
by firstly optimizing the trajectory and then adjusting dense
maps accordingly. In this work, our proposed multi-robot
dense reconstruction system Coxgraph can exchange dense
map data with minimal communication load, and optimize
jointly on trajectory and submap poses, to realise online

collaborative volumetric mapping with global consistency
across robots.

III. SYSTEM OVERVIEW

The architecture of our system, i.e. Coxgraph, is depicted
in Figure 2. Coxgraph aims at transmitting dense reconstruc-
tion data at a minimal requirement of network traffic, and
optimizing dense maps globally to get optimized and globally
consistent reconstruction results.

A. Client

Each client runs modules of visual-inertial odometry and
dense SDF reconstruction in a client-server manner. When
executing a reconstruction task, the visual SLAM module
tracks the camera pose and transmits keyframe data to server.
Meanwhile the reconstruction module integrates point clouds
into TSDF (Truncated Signed Distance Function) voxels
based on camera poses and transforms between sensors.
After each certain period Tsubmap, the current TSDF map in
clients is published to the server as a submap. The integration
in the server then starts with an empty TSDF map. To reduce
communication usage of transmission of TSDF submaps, the
submaps are sent as mesh packs, and then recovered to SDF
submaps in the server (refer to Section V).

B. Server

Loop Closure Detection See Section IV-A. In the server
end, the loop closure detection module collects keyframe
data from client visual odometry frontend, searches keyframe
matches and computes transformations between keyframes
from different clients. Then keyframe matches and transfor-
mations are forwarded to optimization module.

Client Handler Client handlers receive submap data from
clients, recover mesh packs to TSDF submaps which are then
converted to ESDF (Euclidean Signed Distance Function) for
later optimization, and forward odometry constraints to the
following pose graph optimization.

Optimization We develop a robust map fusion method
through joint optimization of trajectories and the recov-
ered submaps. The optimization module optimize poses of
submaps based on three types of constraints: odometry, loop
closure and registration constraints, see Section VI. After
optimization, relative transformations of client maps can be
determined and used for inter-robot localization. Finally,
SDF submaps and meshes are combined and filtered based
on submap poses to obtain global reconstruction results.

IV. LOOP CLOSURE DETECTION AND SDF-BASED
OUTLIER REJECTION

A. Loop Closure Detection

Similar to other inter-robot localization methods [6], [5],
[13], in this work, keyframes are firstly matched by querying
the bag-of-words database, and a single database is shared
among all clients to enable loop closure detection across
clients. Then correspondence searching is performed on the
best N candidates. Each match candidate is checked for
its associate 3D landmarks, which are reprojected from the



Fig. 2: Overview of Coxgraph system architecture. A multi-robot dense mapping system requires minimal network traffic
and onboard computation on clients, and meanwhile maintaining global consistency intra- and cross- robots.

candidate frame to the current frame, and vice-versa. After
3D-2D RANSAC outlier rejection, valid keyframe matches
and relative pose Ti j are published if sufficient inliers are
found. Here we extend the client-server version of VINS-
Mono in [13] to work as the VIO frontend and loop closure
detector in our system.

B. SDF-based Outlier Rejection

Thanks to the SDF transmission method introduced in Sec-
tion V, we are able to obtain clients’ SDF maps in the server.
Therefore for each computed loop closure transformation Ti j
between submap Si and S j, we can take extra steps of loop
closure outlier rejection based on dense maps, besides com-
monly used keyframe-based pairwise consistency checking
steps as in [8].

1) Trajectory Collision Check: For each loop closure can-
didate pair, i.e., submaps Si and S j, we check the validity of
received loop closure transformation by checking trajectory
collision, given the fact that, transformed to the second
submap S j, all poses in the trajectory Pi of the first submap
Si should always lie in the free space of the second submap
with a static environment assumed, i.e., the corresponding
voxels in S j haven’t been created or have the default free
space distance value.

Poses are considered valid if their transformed positions
in S j is not occupied, i.e., its SDF distance value is bigger
than the default value for free space. This step of checking
is bidirectional, i.e., the trajectory of S j is also transformed
to Si for checking. If a minimal fraction of trajectory poses
remain in the free space in the collision check, we consider
the loop closure transformation Ti j passes this checking.

2) Fitness Check: For fitness checking, we take a similar
method as SDF-based fitness evaluation in [18]. Isosurface
points pi

iso of Si are firstly transformed to S j. Given a correct
relative transformation TSiS j , transformed isosurface points
should still lie in the isosurface of the other submap. If not,
a fitness score can be determined by the fraction of pi

iso to
return a valid SDF value near to 0. Naturally, this step is
also performed bidirectionally by transforming p j

iso into Si.

V. SUBMAP TRANSMISSION

Millane et al. propose C-Blox in [19] that uses SDF-based
submaps as the representation of map, and in Voxgraph [20],
Reijgwart et al. optimize submap pose graph to reach global
consistency in large-scale dense SDF mapping and high com-
putation efficiency. In this work, we extend their work for
multi-robot application, by introducing a method of submap
transmission with minimal network usage, and meanwhile
maintaining the advantage of global consistency.

As introduced in Voxgraph [20], there are two types of
data needed to construct registration constraints in submap
pose graph optimization: isosurface points and SDF maps
containing distance and direction information.

In order to publish necessary data for optimization with
minimal data size, we leverage the ability of meshes to
represent SDF maps. From a SDF map, meshes are extracted
by connecting zero-level voxels using the marching cube
method [21]. In this way, we can represent isosurface points
using mesh vertices. Furthermore, to reconstruct SDF maps
in server end, besides the isosurface points, we also need
to know the observation ray of these points to re-integrate
them into SDF maps. So we record and publish visibility
information of each mesh triangle, i.e., in which frames it has
been observed, and the poses of all frames in each submap.
Therefore, having isosurface points and associated camera
poses, we can re-integrate points to get a recovered SDF
map with negligible onboard computation cost and minimal
bandwidth usage.

In conclusion, three types of data are recorded during the
compression of each submap Si, named as mesh pack for the
remainder of this work, including:

1) Mesh data of submaps, containing triangles.
2) Frame indices iobs of each mesh triangles when the cor-

responding voxels are observed, noted as observation
history vectors hv.

3) Camera poses in each submap.
Noticeably, each mesh triangle only contains three vertices

and colors, but every triangle can be observed in many
frames during the submap period Tsubmap, i.e., the duration
how long a submap lasts and a new submap should be
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Fig. 3: Mesh pack generation schematic. Besides ver-
tices of each triangle, the observation frame indices iobs ∈
(0,1,2,3,4,5), and pose histories Ti, i ∈ (0,1,2, ...,N) are
also included in mesh packs.

created, which means a triangle may contain an observation
history vector hv requiring larger communication amount
than the triangle itself. However, intuitively the observation
histories of triangle have the property of continuity, i.e.,
if a vertex V is observed at frame t, it is most likely V
is also observed in adjacent frames around t, meanwhile
discontinuous observation has higher possibility to be caused
by noisy sensor data. Therefore, from the perspective of
continuity of observation, history vector can be trimmed
before transmission. In this step, history vectors are trans-
formed into starting and terminating indices of subsequences,
i.e., hv = {is, it}k, k ∈ subsequences. Valid subsequences are
extracted if a subsequence has the continuity where the
difference between adjacent indices does not exceed Kdi f f
and it contains at least Kn indices. In the experiments, we
take Kdi f f = 3 and Kn = 4.

This concise method can reduce the data size of mesh
packs effectively, and as a result, mesh packs require network
traffic only 10% of original TSDF submaps, and about 30%
of mesh packs without history vector trimming, as shown
in Figure 8a and 8b. We evaluate the proposed recovery
method in Section VII-A, and the quality of the recovered
SDF is illustrated in Figure 5. We then optimize submap
poses globally, and generate global maps as in Section VI.

VI. MAP FUSION OPTIMIZATION

After valid loop closure messages are received, different
from other multi-robot localization systems which perform
global optimization on loop closure constraints directly on
trajectories to correct drifts, we propose a robust map fusion
method through joint optimization of trajectories and SDF
submaps with the awareness of dense mapping consistency,
by including registration constraints between overlapping
submaps as firstly proposed in [20].

A. Constraints

Three types of constraints are considered:
1) Loop Closure: The poses of submaps related to the

loop closure message are firstly adjusted by transformation
TSiS j as deducted as following, in which TSita stands for the
camera pose at ta in the submap frame of Si, also the case
to TS jtb , and Ttatb is the received loop closure transformation
between camera pose at ta and tb:

TSiS j = TSitaTtatbT−1
S jtb

(1)

Therefore the loop closure constraint is given as:

ei, j
loop(TWSi ,TWS j) = log(TWSiTSiS j T

−1
WS j

) (2)

In the case of multi client map fusion, TWSi ,TWS j are the
poses of submap Si and S j in the world frame, and by default,
the world frame is set identical to the odometry frame of
client C0, i.e. TWC0 = I.

2) Odometry: Odometry-estimated relative poses TSkSl of
submaps from the same client, between submap Sk and Sl ,
are added as constraints as following,

ek,l
pose(TWSk ,TWSl ) = log(TWSk TSkSl T

−1
WSl

) (3)

3) Registration: The correspondence-free registration
constraint proposed in [20] is included in optimization.
Firstly, overlapping submaps Sm,Sn are detected by com-
paring poses and bounding boxes. Then points pSm on
iso-surfaces are extracted from Euclidean Signed Distance
Function (ESDF) of submap Sm and projected to the frame
of submap Sn. The distance from projected point pi

Sm
to iso-

surface of submap Sn can be determined by reading the ESDF
value at the point. Registration constraint is then formed
expressing all squared distances from points pi

Sm
to iso-

surfaces of Sn:

em,n
reg (TWSm ,TWSn) =

NSm

∑
i=0

rSmSn(pi
Sm
,TSmSn)

2, (4)

where NSm are the number of iso-surface points of submap
Sm. Then the residual rSmSn is given by:

rSmSn(pi
Sm
,TSnSm) = ΦSm(pi

Sm
)−ΦSn(TSnSm p j

Sm
)

=−ΦSn(TSnSm p j
Sm
),

(5)

where ΦSm(pi
Sm
) = 0, for all pi

Sm
lie on iso-surface, and TSnSm

is a function of optimization variables in χ as:

TSnSm = T−1
WSn

TWSm (6)

B. Optimization

In the stage of optimization, we firstly roughly align
submap poses based on odometry and loop closure trans-
formations, and then add registration constraints between
all overlapping submap pairs. The pose graph of submap
poses is illustrated in Figure 4. From global optimization, we
generate two outputs for inter-robot localization and global
mapping:

Client Frame Determination For inter-robot localization,
after we optimize constraints on poses of each submap
from clients, transformations between client odometry frames
T i, j

CαCβ
can be determined from pairs of submap poses from

different clients.



Fig. 4: Schematics depicting the pose graph in map fusion
optimization. There are three client 0, 1 and N in this
graph and contain client submaps indicated as purple circles.
Red, greed and blue lines relatively stands for loop closure,
odometry and registration constraints.

To obtain an optimized T opt
CαCβ

that minimizes the total error

over all T i, j
CαCβ

, we perform another lightweight optimization
on client frames.

This second optimization takes transformation TWCγ
from

the world frame to the client odometry frames as nodes,
aiming to minimize the transformation error on T i, j

CαCβ
, the

constraint is formed as:

eα,β
t f (TWCα

,TWCβ
) = log(TWCα

T i, j
CαCβ

T−1
WCβ

), (7)

where, the world frame is initialized as TWC0 = I, if not
specified externally.

Therefore, from the result of client frame optimization, we
can determine transformations from the world frame to the
client frames.

Global Map Generation To generate global volumetric
map, we combine all SDF submaps as [19] and [20]. In
addition to the global SDF map, we also combine and filter
the received meshes which are the same ones used for
submap recovery to generate global map to compensate the
completeness loss caused by SDF integration in complicate
scene.

Figure 9 shows the comparison of meshes generated in
different stages and methods. Figure 9b is generated by
combining meshes, and 9d is the mesh generated from recov-
ered SDF. The combined mesh can effectively compensate
reconstruction completeness loss caused by submap merging.

VII. EXPERIMENTS

We validate and evaluate the proposed submap transmis-
sion method and reconstruction performance of our multi-
robot system with extensive experiments in this section.

A. SDF Recovery

We firstly evaluate the performance of the proposed mesh-
to-SDF recovery method, on both Machine Hall and Vicon
Room 1 scene of EuRoC Dataset. The SDF map is recon-
structed using voxblox and the camera poses provided by
VINS-Mono, converted to mesh pack, and then recovered to

TABLE I: Reconstruction error of the proposed SDF recov-
ery method compared to original SDF map.

Scene V1 01 MH 01 MH 02 MH 03
RMSE(m) 0.059 0.065 0.069 0.029

Fig. 5: Comparison between meshes generated from origi-
nal (left) and recovered (right) SDF maps of Vicon Room
1.

SDF. For better comparison, the recovered SDF is converted
to mesh again, and compared with the original mesh. The
reconstruction error between the origin and the recovered
mesh is shown in Table I. Based on the surface reconstruction
error, the recovery method only cause slight error compared
with the origin SDF map. Also the transformation process
only costs negligible computation, since the recording of
all required information is already finished while integrating
point clouds into SDF.

B. Multi-Robot Reconstruction

We further test the multi-robot reconstruction performance
of Coxgraph. We reconstruct Machine Hall with flights
MH 01, MH 02 and MH 03 of the EuRoC Dataset using
depth maps generated from stereo matching, with the voxel
size set to 5cm. The merged trajectories and meshes are
demonstrated in Figure 7. Using Machine Hall flights, we
evaluate our system with the metrics of Absolute Trajectory
Error (ATE), reconstruction error and average data size
transmitted for submaps. The SDF map generated offline by
Maplab [22] is used as the ground truth. The trajectory error
is demonstrated in Table II, and the surface reconstruction
error is shown in Table III. Our system can effectively
correct trajectory drift, as seen in the experimental results.
Working in the direct mode, i.e., transmitting SDF directly,
our system reaches a surface reconstruction RMSE of 0.116
m with bandwidth usage around 1 MB/s. Compared to the
direct mode, the recovery mode provide dense reconstruction
result with 0.129 m reconstruction RMSE as demonstrated
by Figure 9d, and network traffic only about 100 KB/s. Also
the mesh combination step of recovery mode can generate
meshes with higher completeness as shown in Figure 9b with
a reconstruction RMSE of only 0.111 m. Data sizes and
bandwidth usage in Machine Hall experiment are illustrated
in Figure 8.

C. Platform Experiment

In order to attest the performance and practicality of
Coxgraph in a real-world scenario, we reconstruct the CVG
Lab in Zhejiang University. Three clients are tested in the
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Fig. 6: Global consistency maintaining ability of our system.
(a) is the mapping result of client 0 with accurate odometry
and mapping result. In (b), client 1 is obviously affected by
drifted odometry. The server still successfully corrects the
odometry drift in client 1, and generates an accurate dense
map (c) thanks to a correct loop closure and the optimization
process.

TABLE II: Trajectory ATE comparison for EuRoC experi-
ments. Our submap-based optimization system is compared
against VINS-Mono realtime output running on clients, di-
rect means optimization on raw SDF maps directly instead
of recovered ones. RMSE (m) values are reported.

System MH 01 MH 02 MH 03 merged
VINS-Mono(realtime) 0.24 0.22 0.21 -

Ours(direct) 0.22 0.10 0.10 0.17
Ours(recovered) 0.23 0.11 0.19 0.21

TABLE III: Surface reconstruction comparison between
meshes generated from SDF transferred directly, transferred
as mesh packs, and by combining mesh according to opti-
mized submap poses. RMSE (m) values are reported.

Method MH 01 MH 02 MH 03 merged merged mesh
direct 0.238 0.267 0.264 0.116 -

recover 0.247 0.269 0.262 0.129 0.111

(a) (b)

Fig. 7: (a) Top view of trajectories in server map. (b) Result
mesh colored by client id. Red: client 0 (MH 01). Green:
client 1 (MH 02). Blue: client 2 (MH 03).

(a) (b)

Fig. 8: (a) Data size for each submap during reconstruction of
Machine Hall. Blue bars are sizes of TSDF submaps, red bars
are sizes of mesh packs with trimmed history vectors and
yellow bars are sizes of mesh packs with complete history
vectors. (b) Network traffic of transferring data of different
types. The orange line is mesh pack with complete history
vectors, the blue line is mesh pack with trimmed vectors, the
yellow line is mesh without history data, and the purple line
is keyframe data used for inter-robot localization.

TABLE IV: Network traffic load of messages from clients
to server during reconstruction of CVG lab.

Message Type Mean Bandwidth Std Deviation
Keyframes 20.25 KB/s 6.58 KB/s

Mesh Packs 25.24 KB/s 11.70 KB/s

experiment. Each client has a RealSense D435i depth camera
for data collection, and a NUC10i7FNH onboard computer
for processing. The server runs on a LENOVO LEGION
laptop, of which the WiFi module is used as the router. The
reconstruction result in Figure 1 is generated online with a
voxel size of 0.1m and the submap interval of 5 seconds.
The center of Figure 1 is the global mesh generated online
by the server and colored by height, while the surroundings
are the mapping results of three clients.

We also record CPU usage of client modules shown in
Figure 10. Because the mesh observation history can be si-
multaneously recorded when updating SDF voxels, the mesh
pack generation costs negligible CPU load. And since VINS-
Mono frontend does not need to optimize the pose graph,
it requires less computation. The percentage corresponds to
how much of a single CPU thread is utilized. Our main
client nodes TSDF integrator and VINS-Mono odometry
frontend only consume approximately 110% and 180% of
CPU load. Because only a local map of a time window is
maintained by clients, our system unleashes the clients from
the considerable memory usage of SDF reconstruction.

Sequences are also picked to show the ability of our
proposed method to maintain inter-robot global consistency
even with odometry drift in clients. As seen in Figure 6, the
mapping result of the second client (Figure 6b) is severely
affected by odometry drift when driving out the meeting
room. However, in the global map generated by server,
the error is effectively suppressed during the optimization
thanks to a correct loop closure detected and the optimization



(a) (b) (c) (d)

Fig. 9: Comparison of meshes. (a) ground truth mesh generated offline by Maplab. (b) from global mesh generation step in
our method. (c) generated from origin SDF submaps. (d) generated from recovered SDF submaps.

Fig. 10: CPU usage break down of Coxgraph client nodes,
our client nodes cost only around 290% of CPU utilization.

method.

VIII. DISCUSSION AND CONCLUSIONS

In this paper, we propose an efficient system named
Coxgraph for multi-robot collaborative dense reconstruction
in real-time. To facilitate transmission, we propose a compact
representation which transforms the SDF map to mesh packs
that can be recovered to SDF map, and the submaps of clients
are optimized and merged to reach a globally consistent
dense map. Our proposed system can be easily extended
with a path planning module in the future, and also have
the potential to be modified to a distributed system.
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