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Abstract—Traditional cargo loading requires a static record-
ing of cargo information and status on paper. Storekeepers
need to arrange cargoes by memory or cargo menus, severely
restricting the entire cargo loading management process. To
address this problem, we present a multi-device integrated
cargo loading management system with Augmented Reality (AR),
termed ARCargo, which monitors cargoes by fusing perceptual
information from multiple devices in real-time. Then, we propose
a visual localization method using hybrid features to strengthen
the localization accuracy. For providing an intuitive and user-
friendly interactive way, we design AR-driven guidance and
monitoring alarms to reduce the workload of cargo loading
management. Extensive experiments show that our system can
efficiently, intelligently, and conveniently carry out cargo loading
management operations.

Index Terms—Cargo Loading Management System, Multi-
Device Integrated, Augmented Reality, Visual Localization,
SLAM, AprilTag

I. INTRODUCTION

A timely and convenient cargo loading management system
is essential to ensure a good experience for employees in
cargo loading and achieve better cost reduction and efficiency.
Recently, augmented reality (AR) technology [1] has gained
wide attention, with applications ranging from entertainment,
live broadcast, navigation, etc. However, it has rarely been
used in the area of cargo loading management. Traditional
cargo loading management systems involve considerable ad-
ministrative work, including cargo information management,
cargo scheduling, monitoring, adjustment on cargo status. A
high level of accuracy, convenience, and real-time is urged
in cargo loading. Universally, cargo information, such as
material, weight, size, and location, is recorded statically on
paper, which costs dozens of paper documents. In traditional
cargo loading operations, the storekeeper needs to place the
cargo in the designated position by memory or cargo menu,
which aggravates their physical and psychological burdens and
even leads to an inaccurate placement that severely limits the
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Fig. 1. ARCargo system. Our system supports various mobile devices with
AR, such as phones, tablets and head-mounted display (HMD). (a) Our system
works with a smartphone HUAWEI P20 Pro. (b) Our system works with a
AR glass Shadow Creator Action One Pro.

efficiency of the overall cargo loading. Throughout the loading
process, the position or status of the cargoes may change
unexpectedly (for example, cargoes may fall from the shelves
due to collision), which requires storekeepers to spend extra
time on risk detection and manual correction. For this reason,
we consider the possibility of introducing AR technology to
enhance the cargo loading management system, as illustrated
in Fig. 1.

For the problems aforementioned, we do the following
analysis: AR-supported cargo records can render the cargo
information onto cargo entities, enabling the integration of
virtuality and reality. With AR devices, storekeepers can
instantly get information about which item to pick and where
to place it without searching dozens of paper documents.
With the AR interactive guidance, the cargo arrangement
becomes traceable and more convenient. To ensure the correct
placement of cargo, a multi-device collaborative cargo loading
system is required to monitor cargo locations in real-time and
alert the storekeeper for unexpected cargo changes. AR can
provide continuous cargo information in the dynamic loading
process, which can accelerate the whole procedure. In addition,
the system is required to support multiple people to perform
loading management operations simultaneously.



Based on the above considerations, we propose an integrated
multi-device cargo loading management system with AR. Our
system, illustrated in Fig. 3, includes a cloud-based server
to manage cargo information and a 3D model of the scene
and perform cargo distribution, visual localization, monitoring,
and other tasks. It allows different mobile devices, such as
smartphones, tablets, or HMD, to communicate with each
other to perform tasks such as cargo information management,
interactive cargo guidance, etc. Please see the method section
III for more details. The monitoring module of the system is
ensured by a stereo camera and the clients, where the stereo
camera is statically placed to provide the global information
of the shelves, and the clients dynamically track the cargo’s
local information, which greatly enhances the robustness of
the system. Since the shelves are usually covered by weak
texture and repetitive structure, the accuracy of traditional
visual localization methods is significantly reduced. To solve
this problem, we propose a visual localization algorithm that
combines markers features with scene features. The direct use
of detected markers and scene features may not improve the
accuracy because the accuracy of markers closer to the visual
frustum surpasses the scene features and vice versa. Therefore,
we propose a hybrid feature-based visual localization algo-
rithm weighted by uncertainty.

In terms of reducing the burden of workers on cargo loading
management, we propose a new AR-support interaction mode,
shown in Fig. 2, which can inform the cargo details, the
target location, as well as an arrow to guide the workers
to perform the relevant operations. As for monitoring and
alarm, our system’s hybrid visual localization module will alert
workers if some cargoes are misplaced accidentally so that the
storekeeper can revise them immediately. Various experiments
have proven the accuracy of our system, and user studies
with objective and subjective criteria have shown that our AR-
enabled system can facilitate intelligent and efficient loading
operations and further ease the mental and physical burden of
workers. Overall, our contributions are summarised as four-
fold.

• We propose a novel multi-device integrated cargo man-
agement system with AR.

• We present a visual localization method using hybrid
features based on uncertainty.

• We introduce an AR-driven interactive guidance and
monitoring alarm program to improve the cargo loading
management experience.

• Extensive experiments have shown that our system can
efficiently, intelligently and conveniently carry out cargo
loading operations.

II. RELATED WORK

A. Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) mean us-
ing images to recover 3D structures and sensor motions in
unknown environments [1]. It was initially proposed to equip
autonomous robots with various sensors to locate their position

Fig. 2. Visualization of our AR guidance. The red cube denotes the current
location of the cargo. The yellow cube denotes the target location of the cargo.
The green cube denotes that the cargo was correctly placed.

and pose. In recent years, SLAM techniques that use the cam-
era only have been widely discussed. Since the camera only
can capture images, this type of SLAM is called visual SLAM
(VSLAM). VSLAM can provide accurate pose estimation
for mobile devices, allowing AR applications to realistically
superimpose virtual objects over real-world [1]. The first
solution to the monocular VSLAM is MonoSLAM [2], which
is based on the extended Kalman filter model. Subsequently,
the keyframe strategy is introduced to SLAM. ORBSLAM [3]
extracts ORB features, builds covisibility graph to reduce the
complexity of tracking and mapping and enables loop closure
with DBoW2 [4] for building a complete and accurate global
map. Recently, a multi-sensor fusion strategy has been applied
to enhance the robustness of VSLAM under extreme situa-
tions. The first visual odometry system with tightly coupled
inertial measurement units (IMUs) is OKVIS [5], which fuses
motion measurement of IMU in visual odometry. However,
the robustness of OKVIS is severely limited by the speed of
IMU initialization. VINS-Mono [6] is a successful monocular
visual-inertial odometry with pose graph optimization, map-
merging, loop closure with DBoW2 and feature tracking with
Lucas-Kanade tracker [7]. In our system, the phones and
tablets use monocular visual-inertial SLAM for tracking, while
the AR glasses use stereo visual-inertial SLAM.

B. Visual Localization

Accurate visual localization pays attention to find the cor-
respondences between 2D key points of the query image and
3D points in a 3D SfM model. Those methods often follow
the pipeline, detect key points, extract the description of key
points and perform matching between 2D and 3D points to
estimate the pose of the given query image. To scale the
localization model to large scenes [8]–[11], they leverage
image retrieval based method [12], [13] to filter dissimilar
candidates. Using retrieval-based method only can provide a
coarse pose for localization [14]. Besides, approaches that di-
rectly regress a single image pose are not competitive in terms
of accuracy. HLoc [10] is the state-of-the-art method for visual
localization task, which combines the superior visual place
recognition approach, NetVLAD [15], 2D keypoint detector,
SuperPoint [16] and feature matching method SuperGlue [17].
HLoc can achieve good performance under strong appearance
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Fig. 3. ARCargo architecture. Our architecture consists of a cloud-based server and multiple mobile clients. The server is responsible for the storage
management of cargoes, which provides services such as cargo distribution, centroid monitoring and communication with the client about the location of
cargoes. While the clients rely on SLAM, AprilTag tracks user movements and real-world objects for providing accurate AR assistance in cargo handling.

changes and different light conditions thanks to those previous
works. Since our shelf scenes are challenging and contain
many textureless structures, the state-of-the-art methods such
as HLoc [10] are difficult to always perform robust pose
estimation, and we additionally add AprilTag [18] markers.
Considering the difference in the confidence level of different
features, we propose an uncertain-aware visual localization
method using hybrid features.

C. AR Systems

AR refers to the real-time technology that enhances real-
world 3D environments with virtual 3D objects to aid the
user’s interaction with the real world [1]. AR systems have
been integrated into all kinds of commercial mobile devices,
thanks to the development of SLAM, visual localization,
3D rendering, and AR Software Development Kits (SDK)
that package these underlying technologies as easy-to-use
interfaces. Among the most widely used AR SDKs are ARKit
for iOS, ARCore for Android, and Vuforia for the Unity game
engine [19]. Meanwhile, the fast development of AR systems
has also been spurred by advances in computational power, and
various hardware components such as a head-mounted display
(HMD), positional tracking sensors, gestural input devices,
and wireless communication components [20]. These hard-
ware developments allow us to get rid of large cumbersome
proprietary AR devices and embrace commercially affordable
portable devices, such as Microsoft HoloLens, that facilitate
hands-free user interactions and immersive experiences [21].
While we develop different mobile AR programs according
to the hardware properties of different mobile devices and
cooperate with our cloud server architecture to realize a multi-

device integrated cargo loading modelling management system
with AR.

III. MULTI-DEVICE INTEGRATED CARGO MANAGEMENT
SYSTEM WITH AR

A. Multi-Device Integrated Cargo Management System

The architecture of our system, i.e. ARCargo, works as a
client-server model, shown in Fig. 3. The server is responsi-
ble for the storage management of cargoes, which provides
services such as cargo distribution, centroid monitoring and
communication with the client about the location of cargoes.
Furthermore, we deploy an additional stereo vision camera to
monitor cargoes. The clients rely on SLAM, AprilTag to track
user movements and real-world objects for providing accurate
AR assistance in cargo handling. The video showing the use
of the system is available at https://youtu.be/La7TNMIDWvY.

1) Server: The server is deployed in the cloud, and we have
also designed a desktop application to provide visual feedback
and operational experience. First, the server will automatically
load the cargo database and the 3D model of shelves, which
is built by COLMAP [22], [23] in advance. After receiving
cargo loading requests from the client, the server will send
the target cargo location to the client. The target location is
derived from our assignment algorithm, which is designed to
enhance the stability of shelves. The instability is equivalent to
the deviation of the shelves centroid caused by the placement
of the cargo. The client will report the final location of cargo
to the server after cargo is well placed, and the server checks
its centroid deviation to the target location. Since the wrong
placement, which significantly deviates the overall centroid
from the stable location, may lead to the shelf’s corruption or



damage, the server’s alarm module will send a signal to the
client and ask it to place the cargoes at the correct position.

In addition, we equip a stereo camera to monitor the
distribution of cargoes and the centroid of cargoes shelves
in real-time. We put AprilTag makers on the shelf sidebar,
shown in Fig. 4, and obtain the shelf coordinate system from
the 3D model. AprilTag markers are used to establish the
correspondences between the camera and the shelf coordinate
system. PnP [24] is employed to efficiently solve the relative
transformation between the camera and shelf coordinate sys-
tem from which the centroid of shelf results. The cargo is
also tagged with AprilTag markers so that each cargo can be
identified uniquely, and the stereo camera can track its cen-
troid. The server checks the deviation of the overall centroid
by fusing the centroids of cargoes and shelves captured by
the stereo camera statically. On the other hand, the server
also dynamically utilizes the information from the client to
track the centroid of cargoes where the stereo camera can not
see. The multi-device integrated centroid monitoring approach
ensures the robustness and accuracy of the system.

Furthermore, a hybrid feature-based visual localization
module is developed to improve the quality of pose estimation
at the client. We extract the sparse feature points and corner
points of AprilTag from the received image and fuse them
to reach a more accurate localization result. We detail it in
subsection III-B.

Fig. 4. The cargo shelves tagged with AprilTag markers.

2) Clients: Our clients can adapt to various devices, such
as HMDs and mobile phones. The clients exploit SLAM
to track the position and orientation of the device. In the
initialization phase, SLAM is activated first to track the device
and build the initial map. With AprilTag markers on the shelf,
we can easily align the SLAM coordinate system to the shelf
coordinate system by solving the PnP problem, depicted in
Fig. 5. When an AprilTag marker (attached to the cargo) with
high confidence is recognized, the client asks the remote server
for the target location of the cargo. We set translation and
rotation constraints to determine the deviation of the centroid
of the cargo. As soon as the deviation of the centroid exceeds

the threshold, the client activates the AR guidance module to
guide the user to place the cargo at the correct location. After
the cargo is well placed, the client sends its final location
to the server, which helps the server monitor the cargoes
dynamically.

Fig. 5. The coordinate transformation of ARCargo schematic overview.
We define the coordinate system of reconstruction of shelves as the world
space. SLAM tracks the pose of continuous frames. Hybrid visual location is
used to compute the transformation between each frame and shelf. The cargo
is registered to SLAM space by AprilTag.

The pose estimation based on AprilTag is severely affected
by the distance between the camera and AprilTag. When the
distance is too large, the corner points of AprilTag account for
a small part of the image, which exacerbates the uncertainty of
pose estimation. Visual localization is a well-defined solution
for indoor localization at an arbitrary scale, which we apply to
resolve the pose estimation at a great distance. When the client
detects that the distance between the device and AprilTag is
too large, it sends the current frame to the server. The server
performs visual localization with hybrid features and responds
to the client with the solved relative poses (about 1FPS),
allowing the client to initialize more robustly. Moreover, after
the client has been running for a long time (about every 100
frames), the client will request the global localization results
from the server to correct the drift, which ensures our system
can run in real time and robustly.

B. Visual Localization using Hybrid Features

The localization module will fail if we only use ApriTag
markers to compute the pose of the given query image when
the image does not contain AprilTag markers or is far away
from the shelves. Inspired by the visual localization technique,
we combine the visual localization method and the AprilTag-
based method to get the pose of the current image robustly.
The pipeline is shown in Fig. 6.

1) HLoc: Given a query image Iq captured by the mobile
device, the localization module will return the pose of the
given query image. To achieve this goal, we obtain the pose
in the following steps. Firstly, different from HLoc [10], we
use the NetVLAD model to retrieve the similar scene in
the database, which are collected in the system setup phase.
NetVLAD is more powerful in visual place recognition than
the MobileNet [25] used in HLoc:

Dq = FNetV LAD(Iq) (1)



Fig. 6. Pipeline of Visual Localization Using Hybrid Features. We perform
hierarchical visual localization based on the uncertainty of the hybrid features
of marker and scene.

The output of NetVLAD is a global descriptor of the image
which will be used to search the similar descriptor in the
database:

Ddb = {FNetV LAD(Ii)|i ∈ [1, N ]} (2)

where FNetV LAD represents the convolutional and fully con-
nected layers of the NetVLAD model. N is the size of the
image database, Iq, Ii, i ∈ [1, N ] are the query and database
images, respectively. Dq, Ddb are the keypoint descriptors of
query and database images.

After obtaining the global descriptors of query and database
images, we can get Top-K database images that are similar to
the query image by using the nearest neighbour search method:

ITopk = NNk(Dq, Ddb) (3)

We detect the 2D keypoints of the query and database
images using the SuperPoint model. KLq,KDq are the loca-
tions, descriptions of the 2D keypoint for the query images,
respectively:

KLq,KDq = FSuperPoint(Iq) (4)

KLdb,KDdb are for the database images similarly:

KLdb,KDdb = {FSuperPoint(Ii)|i ∈ [1, N ]} (5)

Now we have obtained the Top-k retrieval results and the
locations and descriptors for 2D keypoints. We use SuperGlue
to match features and get 2D-2D correspondences. With the
3D SfM model, we can obtain the 3D locations of the
key points in the database images. So, we can get the 2D-
3D correspondences and solve the PnP problem to get the
camera pose of the query image. For more details about those
convolutional neural networks we used in the part, please refer
to NetVLAD [15], SuperPoint [16] and SuperGlue [17].

2) AprilTag: When closing to the shelf or AprilTag, using
the AprilTag for localization will get a good performance.
AprilTag is a visual fiducial system, useful for various tasks,
including AR, robotics, and camera calibration. Targets can be
created from an ordinary printer, and the AprilTag detection
software computes the precise 3D position, orientation, and
identity of the AprilTag markers relative to the camera [26].

However, in those places, the camera is far away from the
AprilTag, the pose solved from AprilTag marker is inaccurate.
So using HLoc can get a good localization performance. The
3D positions of 2D keypoints are already estimated from
multi-view images in the SfM stage. So, we can accurately
estimate the rotation matrix of the camera using the obtained
2D-3D correspondences. We use HLoc to obtain a relatively
accurate pose from the place where the camera can not see
the AprilTag markers.

3) Combined Visual Localization: The shelf system has
many repetitive structures and weak textures. If we only
use the 2D-3D correspondences from visual localization, the
localization module will fail sometimes. So we combine the
AprilTag corner detection with visual localization. When we
stand far away from the AprilTag, the AprialTag corners
have high uncertainty and cannot be recognized. So, it is
hard to know where we are. In this situation, we can use
the appearance and structure information for the localization
task. We use SuperPoint [16] and SuperGlue [17] to detect
2D keypoints and match features to get the correspondences.
When we are near the shelf, we can see many repetitive grids,
and the visual features extracted from convolutional neural
networks are similar to other locations. Under the situation, the
accuracy of visual location sharply decreases. So we use the
AprialTag information for localization. Qtag, Ttag is the pose
(rotation and translation) solved from AprilTag and Qvl, Tvl is
the pose from visual localization. Here we use quaternion to
represent the rotation. To combine those two poses, we obtain
the interpolation of those poses. The weight between the two
poses depends on the size of the AprilTag that we captured in
the image.

Qhybrid = slerp(Qtag, Qvl, α) (6)

where slerp() is the interpolation function for quarternion.

Thybrid = α× Ttag + (1− α)× Tvl (7)

Fig. 7. The UI of ARCargo Server.

C. An AR Interactive Pipeline

1) Cargo Information Management: The Windows appli-
cation running on the server supports various administrative
operations ranging from cargo information entry to cargo
distribution optimization, which is performed in a visualized



way through a 2D shelf model displayed on the PC screen,
as shown in Fig. 7. Moreover, warning information is given
on the Windows PC when the centroid of the cargoes exceed
safe limits.

2) Interactive Guidance with AR: Real-time instructions
and hints are given to the storekeeper through virtual 3D
shapes displayed on the Android phone and AR glasses carried
by the storekeeper during the entire work pipeline, shown in
Fig. 8. The storekeeper starts the work pipeline by scanning
several AprilTag markers on the shelves with a mobile AR
device so that the device can be initialized. When the device
has encountered enough AprilTag markers (usually 5 to 8)
to infer its initial location, a visual cue is given to the
storekeeper to proceed with their work. Next, the mobile
device continuously captures all visible AprilTag markers. For
each cargo box lying within the current field of view, the ID
of the box is decoded from the AprilTag. A query will be
sent to the server to get the destination location of this box.
Meanwhile, the current location of the box is calculated from
the relative pose of AprilTag along with the device’s pose
informed by SLAM, show in Fig. 5. All those cargo boxes
whose current location is more than 3 centimetres away from
the destination are considered in need of manual transportation
and are added to the transportation queue. If the queue is
empty, all cargo boxes are highlighted with green virtual boxes
to indicate the completion of work; otherwise, the cargo box
at the front of the transportation queue is highlighted with a
virtual red box, with a virtual arrow pointing from the centroid
of its current location to the centroid of destination.

Fig. 8. Pipeline of Interactive Guidance.

3) Monitoring and Alarm: When each cargo have been
placed in its assigned location, the PC system will monitor
the movement of every cargo. Once the cargo has been moved
bigger than a threshold, the PC system will send a message to
the mobile device and print some information to the screen,
which will warn the people to pay attention to those cargoes.
Then an AR interactive guided cargoes adjustment will be
launched.

IV. EXPERIMENTS

A. System Setup

We need to build a 3D map of the shelves. Firstly, to
improve the discrimination of different parts of the shelves,
we add some AprilTag markers and colourful pictures on the
shelves. Secondly, we use a handheld camera to capture the
texture information of the shelf at different viewpoints and
locations. Then, we use HLoc [10] to build the sparse 3D
SfM model, which uses SuperPoint [16] to detect and describe
the 2D keypoints and SuperGlue [17] to match keypoints.
Besides, we use the pose recovered from the last step to
triangulate the AprilTag corners and obtain the 3D locations in
the sparse model. Finally, we use the 3D point cloud for visual
localization. The sparse 3D SfM model is shown in Fig. 9,
which contains the recovered camera poses and 3D points.
The SLAM function is supported by the AR device itself with
corresponding SDK. For instance, we can use HUAWEI AR
Engine for HUAWEI P20 pro.

Fig. 9. Sparse 3D SfM model of the shelves.

B. Hybrid Visual Localization Results.

The visual localization task is to estimate the camera pose
of an image given the image and its 3D geometric model. In
a realistic scenario of a cargo loading modelling system, it is
difficult to obtain a ground-truth camera pose. For this reason,
we perform the pose calibration by posting a gaint marker
as the landmark to the scene. To obtain the reconstructed
shelf model, we reconstruct the scene geometry with the gaint
marker using COLMAP [22], [23] and obtain the registered
poses of each image. In the visual localization evaluation,
we capture hundreds of frames containing the gaint marker
evenly in the scene and use them to solve the camera pose
as the ground-truth poses. To measure the effectiveness of
our visual localization method, we erase the large markers
from each given image and only use the small markers, scene
features and hybrid features for visual localization. Fig. 10



TABLE I
ABLATION STUDY OF HYBRID LOCALIZATION. WE REPORT THE POSE RECALL [%] AT DIFFERENT ACCURACY LEVELS OF POSITIONS (m) AND

ORIENTATIONS (deg) ON OUR ARCARGO DATASETS. THE ARCARGO DATASETS WERE TAKEN AT DIFFERENT DISTANCES FROM THE SHELF. HYBRID
LOCALIZATION ACHIEVE A GOOD BALANCE AND BE MORE ROBUST TO THE CHALLENGES OF NEAR AND FAR SCENES.

ARCargo Dataset
orientation [deg] distance[m] average average

method 1.5, 2.0, 2.5 0.03, 0.04, 0.05 orientation[deg] distance[m]
only marker 96.3 / 96.3 / 96.3 74.1 / 88.9 / 88.9 4.98 0.16
only HLoc 77.8 / 88.9 / 96.3 63.0 / 70.4 / 74.1 1.14 0.26

marker+HLoc(hybrid) 85.2 / 92.6 / 96.3 63.0 / 66.7 / 70.4 2.98 0.20

shows the matching results obtained from the given image
and the adjacent frames retrieved from the image, and it can
be seen that many matching points can be obtained.

Fig. 10. Mathcing results. The left column contains the query images on
each row, and the right column contains the retrieved nearest database images.
All the correctly matched 3D points are projected onto this database image,
and the projections beyond the border are not displayed.

1) Ablation Study: In this part, we show the performance of
different visual localization results on the ARCargo datasets,
taken at different distances from the shelf. The number of
images taken closer to the shelf is much greater than the
number of pictures taken farther away from the shelf. From
Table I, we can see that the pose estimation using the only
marker is better than the hierarchical visual localization results
at different bins. However, the average rotation error is very
large. The AprilTag accuracy is good enough to obtain a higher
percentage when the client is close to the shelf. However, when
it is far away from the shelf, the quality of AprilTag detection
will be significantly weakened, and the error will be very large,
making the overall error large. As for the hierarchical visual

localization method, since it only considers the points of the
scene, in our repeated-texture or weak-texture shelf geometry
model, it is easy to have too many false matches when the
client is close to the shelf. So, our hybrid visual localization
algorithm considers the characteristics of the two different
features and adapts according to uncertainty information such
as distance to the shelf, which can achieve a good balance and
be more robust to the challenges of near and far scenes.

C. User study

12 volunteers (8 males and 4 females) were recruited to
take part in the study. Firstly, participants were asked to place
cargoes at the correct position on the shelves, helped by a
2D distribution map. Secondly, we assigned AR devices to
each user (6 persons use HUAWEI P20 Pro and 6 others use
Shadow Creator Action One Pro). Participants were requested
to perform another cargo loading guided by AR promoting. In
this study, we captured the objective, as well as subjective, cri-
teria. We physically measured the system’s error by calculating
the centroid deviation of the cargoes from the target position
resulted from the server. After each transport, a questionnaire
about the interaction was completed by participants at once.

TABLE II
ACCURACY OF CARGO BOX PLACEMENT. OUR AR-BASED

INTERACTIVE GUIDANCE METHOD IS MORE EFFECTIVE IN ENHANCING
CARGO PLACEMENT ACCURACY THAN THE METHOD WITHOUT GUIDANCE.

Deviation of Cargo Assignments
Centroid (cm) #1 #2 #3 Average

without guidance 4.9 5.2 4.1 4.7
guided by ARCargo (ours) 1.3 1.5 1.8 1.5

1) Assistance and Accuracy: Given three different assign-
ments of cargo distribution, We measure the deviation of the
centroid of eight cargo boxes from the target position, with
or without the guidance of ARCargo. The results are shown
in Table II, indicating that our AR-based interactive guidance
method is effective in enhancing cargo placement accuracy.

2) Interaction: We utilized NASA-TLX questionnaire [27]
to measure the subjective workload of our AR interaction for
cargo loading. After the operation, participants were asked
to score in six dimensions from 5 to 100 (mental demand,
physical demand, temporal demand, performance, effort, and
frustration), where the lower score denotes the participant feels
ease, relaxed, and gratified. We present the mean values of all
participants. In Fig. 11, the results show our AR-driven system
imposes a significant decrease in workload in cargo handling.



Especially on mental demand, our AR-driven guidance can
accurately and intuitively render the virtual cargo on the target
location in reality, which drastically saves efforts that users
take to keep the cargo location in mind. Moreover, users can
work on cargo loading free of nervousness and pressure, which
positively affects their work performance and mental health.

Fig. 11. Quantitative Results of the NASA-TLX on Physical and AR
handling. The final score of each dimension is the average of scores that
participants write on the dimension. Compared to physical handling, the score
of six dimensions all decreased significantly on our system, especially on
mental demand, which shows our AR-driven system imposes a significant
decrease on workload in cargo handling.

V. CONCLUSIONS

We present a multi-device integrated cargo loading manage-
ment system with Augmented Reality (AR), named ARCargo,
which can dynamically record the running status of cargo load-
ing in real-time. In the system, we propose a visual localization
method using hybrid features to strengthen the localization
accuracy. To reduce the burden of storekeepers on cargo
loading management, we propose an AR-driven interactive
guidance and monitoring alarm program to improve the cargo
loading management experience. Extensive experiments show
that our system can efficiently, intelligently and conveniently
carry out cargo loading management operations.
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