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Abstract

In this paper, we present a novel deep architecture to re-
cover a 3D shape in triangular mesh from a single image
based on mesh deformation. Most existing deformation-
based methods produce uniform mesh predictions by repeat-
edly applying global subdivision but fail to require the high-
lighted details due to the memory limits. To address this
problem, we propose a novel saliency guided subdivision
method to achieve the trade-off between detail generation
and memory consumption. Instead of using local geometric
cues such as curvature, we introduce a global point-based
saliency voting operation to guide the adaptive mesh subdi-
vision and deformation explicitly. Moreover, we propose the
oriented chamfer loss to mitigate the mesh self-intersection
problem in subdivision. We further make our network con-
figurable and explore the best structure combination. Ex-
tensive experiments show that our method can both produce
visually pleasing results with fine details and achieve better
performance compared to other state-of-the-art methods.

1. Introduction

Inferring 3D shapes from 2D images is essential to
achieve the ultimate goal that makes machines see the
world like humans. As a standard representation of 3D
objects, triangle mesh-based learning methods for recon-
struction have garnered traction recently, although there ex-
ist several potential representations such as voxel[4, 30,
12, 38, 28, 33, 37], point cloud[7, 16, 24, 39, 8], implicit
surface[9, 21, 26, 22, 3], primitives[11, 6, 27, 32], etc.
The reason is that the approaches based on these repre-
sentations require extra non-trivial post-processing to gen-
erate the final 3D meshes. A pioneer work, Pixel2Mesh
[34] progressively deforms an ellipsoid to a desired surface
mesh without complex surface extraction procedure. How-
ever, the global 1-to-4 subdivision in their method results in

∗Equal contribution
†Corresponding author

the rapidly increasing vertices and faces which bring huge
memory consumption and constrain the depth of subdivi-
sion. GEOMetrics[29] proposes an adaptive face splitting
method to mitigate this problem by choosing high curva-
ture faces to subdivide during deformation. This may lead
to inconsistency between the chosen splitting faces with the
detailed areas in the real model.

To address the aforementioned problem, we propose a
saliency guided architecture to achieve the trade-off be-
tween detail generation and memory consumption. The
saliency here is expressed by the density of the point cloud
which is generated by the saliency deformation subnet.

Although the saliency can be retained by diverse repre-
sentations, such as heat map, curvature map, etc, here we
regard it as the point cloud distribution. That is, the denser
the point cloud is, the higher the probability of subdivision
is, vice versa.

Our insight is that combining various 3D presentations
can exploit the advantages that each representation brings.
Although mesh can represent a watertight surface, it is also
constrained by local smoothness and topological shape. In
contrast, points can move freely in the 3D space but lack
suitable geometry constraints. Based on this knowledge,
we develop a point-based saliency deformation network to
deform the uniformly distributed point to the target position,
which represents the saliency. Then points are leveraged to
guide the mesh subdivision through a voting strategy.

To mitigate the mesh self-intersection problem easily
brought in mesh deformation, we introduce an oriented
chamfer loss and adopt the metric Mesh-Intersection-Ratio
named MIR in our evaluation to estimate the extent of the
mesh self-intersection. Besides, we modularize our model
to explore configurations that satisfy the best performance.
The contribution of this paper can be summarized as fol-
lows:

• We propose a novel saliency guided subdivision net-
work for mesh reconstruction by taking advantage of
point cloud and mesh representation to achieve the
trade-off between detail generation and memory con-
sumption.
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Figure 1. Deform a coarse shape (a) to more meticulous shapes (c) (d) by repeatedly using adaptive subdivision under the guidance
of saliency points (b). Our method can generate finer meshes with better details but require much fewer faces compares to the global
subdivision (e).

.

• We introduce an oriented chamfer loss to reduce the
self-intersection phenomenon and propose the MIR
metric to verify the effectiveness.

• Our model is configurable and easy to explore the best
structure combination. Extensive experiments demon-
strate that our method can not only produce more visu-
ally pleasing results with fine details but also achieve
better performance compared to previous methods.

2. Related Work
2.1. 3D Reconstruction

Due to the variety of 3D representations, the learning-
based reconstruction methods are separated into several
branches. The early works [4, 37, 38] prefer to employ
volumetric representation for voxels have compact and or-
dered structure which could be fed into the encoder-decoder
network directly. However, the memory consumption of
3D voxels highly constrains the resolution. Wang et al.
2018[35] proposed an Octree-based method to reduce the
number of voxels by introducing complicate tree struc-
ture into training, which increases the computation com-
plexity. Fan et al. 2017[7] first proposed to utilize point
cloud, which significantly reduces the burden of memory.
Although points can capture the properties of shape, its
sparseness makes surface extraction fail in some cases. The
same problem happens on some implicit surface methods
[21]. To overcome this problem, Groueix et al. 2018[11]
adopts the learnable surface patches to compose the shape
while [35] exploits adaptive octree based patches to rep-
resent the whole surface. These methods also need extra
post-processing because their output surfaces are not water-
tight. Wang et al. 2018[34] proposed a mesh deformation
based method to output watertight surface without further
post-processing directly. The following work [10] attempts
to deal with holes using the low-resolution volume, while

[25] directly prunes faces on mesh which deviates signifi-
cantly from the ground truth. Wen et al. 2019[36] further
extended Pixel2Mesh to multi-view scenery. Our method is
also based on mesh deformation but pays more attention to
mesh subdivision.

2.2. Mesh Adaptive Subdivision

Although mesh representation is compact and scalable,
it still needs massive faces to present detail parts. In
Pixel2Mesh [34], the global 1-to-4 subdivision is carried
out hierarchically. The rapidly increased vertices and faces
bring massive memory consumption which constrains the
depth of subdivision. GEOMetrics [29] proposed an adap-
tive face splitting method to mitigate this problem. They
choose the high curvature regions at the end of each de-
formation block and add new vertices in the middle of these
faces according to Sqrt(3) subdivision [18]. The main draw-
back of this strategy is that the splitting faces may not be
consistent with the detailed areas in the real model, thanks
to lacking guidance from the global information. However,
our saliency region is trainable and supervised by the real
detail location selected from the ground truth. Then the
mesh deformation network produces finer mesh based on
the saliency.

3. Proposed Method
Our objective is to design a network to reconstruct a sim-

plified and complete surface mesh directly from a single 2D
image without further post-process. The framework is illus-
trated in Figure 2. The whole network extends Pixel2Mesh
[34] to a configurable framework and mainly consists of
three sub-networks, namely image feature extraction net-
work, saliency point deformation network and mesh defor-
mation network. The feature map extracted by the image
feature network is associated with points and mesh vertices
via projection in the other two networks. The saliency point



Figure 2. Overview of our framework. Our network consists of three sub-networks: an image feature extraction network (upper-left), a
saliency point deformation network (upper-right) and a mesh deformation network (bottom). The mesh deformation network is further
divided into three modules: initialization module, global refinement module, and adaptive refinement module. Our network support
configurable settings which mean the last two modules of deformation network can be iterated as many times as desired respectively.

deformation network deforms the initial point set with local
point feature and image feature to the salient regions. The
output point set further guides the selection of subdivision
areas through a saliency voting strategy. The mesh defor-
mation network deforms an initial mesh with local mesh
feature and image feature to a final shape mesh in a coarse
to fine manner. The details of each component are described
in the following.

3.1. Feature Association via Projection

We use a VGG-16 encoder network to extract image fea-
tures from the input image (Figure 2 top-left). Since we
cannot know which part of the information will be used
in the other networks, we construct a feature map that
concatenates the features from conv0 2, conv1 3, conv3 3,
conv4 3, and conv5 4 via inverse pooling operation to en-
sure the feature map has the same height and width as the
input image. The generated feature map contains both low
level local features and high level global features. We then
project the 3D points and mesh vertices from the other two
sub-networks into the feature map using the projection ma-
trix. To retrieve the corresponding image feature from spe-
cific location, the bilinear interpolation strategy is utilized to
gather features from nearby pixels. A fully connected layer
is then used to distill the image feature for different hier-
archies and the local 3D position coordinates are then con-
catenated to compose the 3D features for points and mesh

vertices.

3.2. Saliency Deformation SubNet

We uniformly sample 2048 points in a unit sphere as
an initial point cloud, these points first get corresponding
features via projection described in Section 3.1. Then a
point set deformation network is leveraged to get a com-
plete point cloud with detail information shown in Figure
1(b). The salient points are sparse in non-detailed areas but
much denser in fine-detailed areas such as sharp edges. We
adopt the GraphX Deformation module proposed in PCD-
Net [23] as our point deformation network. GraphX Defor-
mation network is constructed by multiple GraphX layers
which shared similar idea with X -conv [19]. The mathe-
matical form of GraphX is defined as

f l+1
k = σ(WT(

∑
f l
i∈Fl

wikf
l
i + bk) + b) (1)

where f lk denotes the kth point feature of l layer in F l,
wik, bk ∈ R are trainable mixing weight and bias scalar.
W, b are trained weight matrix and bias vector of the fully-
connected layer, σ is activation function. Unlike PCDNet
[23], our point deformation branch does not directly cal-
culate the final position of 3D points, but offsets of initial
points and supervised by simplified points generated in Sec-
tion 4.1.2 with the saliency loss demonstrated in Section 8.



We found that this modification can generate better point
clouds, and can reduce the phenomenon of point clouds be-
ing over-aggregated. These points are distributed around
the highly detailed location, which can be a good guidance
to subdivide and deform the mesh (Figure 2 top-right).

3.3. Mesh Deformation SubNet

Mesh Deformation deforms an initial sphere with 176
vertices and 320 faces to a desired shape mesh. For differ-
ent purposes, we can further divide this subnet into three
modules: initialization module, global refinement module
and adaptive refinement module (Figure 2 bottom). The
first two modules are similar to Pixel2Mesh [34]. The ini-
tialization module deforms the sphere into a coarse shape
without subdivision (Figure 1(a)) while the global refine-
ment module takes in the coarse shape and deforms into a
much nicer one via 1-to-4 global subdivision. The main dif-
ference compared to Pixel2Mesh is that we train the model
through the supervision of the per-vertex offset instead of
the absolute position, which produce the more stable and
visually appealing results, shown in Figure 1(e). The defor-
mation network is a stack of ResGCN layers. The vanilla
GCN layer proposed in [17] has the following propagation:

Hl+1 = σ(D−
1
2 AD−

1
2 HlWl) (2)

where σ is activation function, A is adjacent matrix with
self connection, D =

∑
Aij , and W is learnable weight. A

ResGCN layer is proposed in Pixel2Mesh to enhance local
3D features by skip connection [13].

3.3.1 Saliency Voting & Adaptive Subdivision Module

The global refinement module increases the number of faces
exponentially, which causes enormous memory cost and
makes continuous subdivision impossible. To address this
problem, we borrow the idea from traditional adaptive sub-
division and only subdivide the desired area. Since the gen-
erated point clouds from the saliency deformation subnet
explicitly reflect the distribution of the saliency region. To
align the two representations, we need first to identify the
area on mesh consistent with saliency points.

We introduce a saliency voting operation to select de-
sired areas. We first compute the nearest edge on the mesh
for each point from saliency points and a voting strategy
is then utilized to pick up top K voted edges. The chosen
edges are split into two edges by adding a new vertex in
the middle. To keep the valence of vertex and prevent the
appearance of cracks, we adopt the Green Rule from algo-
rithm [1] to generate new edges which are detailed in Figure
3. The usage of top K edge selection and the Green Rule
can keep the equal edge size for each mesh in a mini-batch.

The initialization module is always needed while the last
two modules can be combined freely. For example, we can

Figure 3. A red dot represents a new vertex generate from the
subdivision, and a green line represents a new edge generated by
Green Rule. The figures from left to right show the edge genera-
tion for different new vertex number.

remove the global subdivision module and only stack adap-
tive subdivision modules which significantly reduce the face
number but present high-resolution surfaces in complex ar-
eas and leave the flat areas in low-resolution (Figure 1(c)
and Figure 1(d)). The exploration of several combinations
is detailed in Section 4.4.

3.4. Loss Function

The output of the network is a triangle mesh M =
(V,E), where V = v ∈ R3 is a set of vertex andE ⊆ V ×V
is a set of edges. To penalize the irregular phenomenons and
enforce the geometric constraints on the predict mesh sur-
face, we adopt the following loss functions.

Edge loss is the key to make vertices on the mesh dis-
tribute uniformly by punishing the over large edges (Equa-
tion 3).

Ledge(V,E) = |E|−1
∑

(v,v′)∈E

‖v − v′‖2 (3)

Laplace loss is used as local smoothness constraint.
However, over-smoothing could cause a loss of accuracy
and lack of details.

Llap(V ) = |V |−1
∑
v∈V
‖v −

∑
k∈N(v)

|N(v)|−1 · k‖2 (4)

where N(v) denotes the neighbors of vertex v.
Move loss aims to fix the topology between two con-

tinuous modules’ output mesh vertices V and V ′ and keep
shape consistency through the whole network.

Lmove(V, V
′) = |V |−1

∑
v∈V,v′∈v′

|v′ − v| (5)

3.4.1 Oriented Chamfer Loss

The chamfer loss is widely used in deep shape reconstruc-
tion problem by matching two unordered point set. The
common form of chamfer loss is shown in Equation 6 while
P,Q ∈ R3 denote two point sets and ΛP,Q denotes the near-



est point pairs.

Lchamfer(P,Q) =|P |−1
∑

(p,q)∈ΛP,Q

‖p− q‖2+

|Q|−1
∑

(q,p)∈ΛQ,P

‖q − p‖2 (6)

In the mesh deformation based method, we can get not
only the position of sampled points but also their normal
direction since they all lie on the surface. If two points have
opposite normal direction, this loss will cause the problem
like self-intersection. To this end, we propose an oriented
chamfer loss to force the normal consistency of matching
point pairs. Unlike other methods [34, 10] who penalize
the inconsistency normals after nearest points matching, we
directly plug an oriented constraint in the matching process

Λ∗Q,P = {(p, argmin(q|np·nq>θ)‖p− q‖)} (7)

where np, nq are the normal of sampled points on pre-
dict and ground truth mesh and θ is a predefined thresh-
old. We denote chamfer loss with the oriented constraint as
Loriented.

3.4.2 Saliency Loss

To supervise the saliency point deformation, we compute
the weighted chamfer loss between the saliency points from
point cloud deformation network with the simplified points
generated from Mesh Decimation (Section 4.1.2). The dif-
ferent weights wq, wp for two matching directions control
the density of aggregation.

Lsaliency(P,Q) =wp · |P |−1
∑

(p,q)∈ΛP,Q

‖p− q‖2+

wq · |Q|−1
∑

(q,p)∈ΛQ,P

‖q − p‖2 (8)

3.5. Implementation Details

Our network is implemented in Pytorch and we use
Adam Optimizer with decay as 5e-6 and set the batch size
as 6 on a Titan Xp GPU. The model is trained for 70 epochs
totally with learning rate 0.75e-4. For the adaptive refine-
ment module, we chose the top 1

5 of the total number of
edges ordered by the voting operation for subdivision. We
sample 10k points on the predicted meshes using the sam-
pling method presented in Section 4.1.3.

The total loss function of our system is defined as fol-
lows:

Ltotal =λ1Ledge + λ2Llap + λ3Lmove+

λ4Loriented + λ5Lsaliency (9)

We set threshold θ = 0 in the oriented chamfer loss, and
set λ1 = 0.3, λ2 = 0.3, λ3 = 0.1, λ4 = 1.0, λ5 = 1.0.
To encourage the vertices to grow to the salient areas, we
remove the edge loss in the adaptive subdivision module
and weaken the move loss for vertices adjacent to newly
generated vertices.

4. Experiments
To evaluate the performance of the proposed method, we

have conducted experiments across 13 classes of ShapeNet
[2] dataset like the other state-of-the-art methods. We fur-
ther study different structure combinations and explore the
best structure.

4.1. Data Preparation

(a) origin (b) watertight

(c) simplified vertices (d) uniform sampling

Figure 4. Data pre-processing example. (a) the original shape
mesh from ShapeNet, (b) the extracted watertight 2-manifold sur-
face, (c) the vertices after mesh decimation, (d) the point cloud
after uniform sampling.

In our experiments, we adopt ShapeNetCore from
ShapeNet [2] and follow the train/test split provided by
Pixel2Mesh[34]. The mesh models in ShapeNet cannot
be directly exploited since some of them have complicated
inner structure and not guarantee the correct 2-manifold
topology (Figure 4(a)). The pre-processing is essential to
generate a suitable training and evaluation set. We take the
following procedures to create our dataset.

4.1.1 Surface Extraction

We adopt the surface generation method proposed in [15]
which utilizes octree structure to represent original mesh
and a modified marching cube [20] algorithm to generate
2-Manifold surface (Figure 4(b)).

4.1.2 Mesh Decimation

To get proper supervision for saliency deformation, we ap-
ply mesh decimation to the 2-Manifold surface which suc-



Category 3D-R2N2 PSG P2M GEOMetrics P2M* GEOMetrics* Ours
Plane 41.46 68.20 71.12 89.00 83.62 80.90 84.75
Bench 34.09 49.29 57.57 72.11 66.75 65.98 71.35
Cabinet 49.88 39.93 60.39 59.52 55.62 51.73 56.44
Car 37.80 50.70 67.86 74.64 71.52 69.22 72.43
Chair 40.22 41.60 54.38 56.61 56.85 57.41 61.82
Monitor 34.38 40.53 51.39 59.50 50.63 48.75 52.11
Lamp 32.35 41.40 48.15 58.65 56.49 56.05 60.32
Speaker 45.30 32.61 48.84 49.53 44.27 41.85 46.52
Firearm 28.34 69.96 73.20 88.30 86.44 84.04 87.19
Couch 40.01 36.59 51.90 59.54 54.33 53.70 57.56
Table 43.79 53.44 66.30 66.33 64.77 63.27 68.18
Cellphone 42.31 55.95 70.24 73.65 62.70 59.83 65.05
Watercraft 37.10 51.28 55.12 68.32 62.54 64.52 66.90
Mean 39.01 48.58 59.72 67.37 64.26 63.01 67.20

Table 1. Quantitative Reconstruction Results. The leftmost 4 columns are reported with the F1 score. The rightmost 3 columns are evaluated
on our dataset and unified evaluation metric to make fair comparison. The proposed method outperforms Pixel2Mesh and GEOMetrics in
the unified evaluation.

cessively collapses the edges [14] sorted by quadratic error.
In this way, the remaining vertices represent the saliency or
high detailed region (Figure 4(c)).

4.1.3 Mesh Sampling

Uniform sampling on surface is necessary since we need
to use the chamfer loss to constrain the deformation. We
make use of the differentiable sampling method (Equation
10) applied in [29, 10, 36].

r = (1−
√
u) · v1 +

√
u · (1−w) · v2 +

√
u ·w · v3 (10)

Where v1, v2, v3 are the vertices of the face. u and w
are sampled from a uniform distribution. The probability
of chosen face is proportional to its area. We sample 10k
points as our ground truth (Figure 4(d)).

4.1.4 Rendering

We rendered each model from 2 random viewpoints with a
fixed radius. The rendered image size is 224 × 224. To
make our model robust in various light conditions, we also
add several random light sources during rendering.

4.2. Metrics

4.2.1 F score

According to the report [31], F-score explicitly evaluates
the distance between object surfaces and is defined as the
harmonic mean between precision and recall. We sample
10k points from the predicted mesh and set τ = 0.0001 as
the threshold. To compare with previous works, we set the
scaling factor to 0.57.

4.2.2 Intersection Ratio

We further propose the Mesh-Intersection-Ratio metric
named MIR to measure the extent of mesh self-intersection
phenomenon. We first detect the self-intersection faces
via MeshLab [5] and then compute the ratio of the self-
intersection area to the total area. However, in the adaptive
scenario, different subdivision depth leads to a highly un-
equal face area. Therefore, we additionally adopt the self-
intersection face number ratio as complementary

MIRarea =
intersect face area

total face area
(11)

MIRsize =
intersect face number

total face number
(12)

4.3. Reconstruction Comparisons

We evaluate the performance of the proposed method
quantitatively by comparing the ability to recover the tar-
get object from a single image against other single-view re-
construction works [4, 7, 34, 29]. The quantitative results
are shown in Table 1. We mainly compare with two mesh
deformation based method Pixel2Mesh and GEOMetrics.
However, we found they adopted the inconsistent datasets
and different evaluation strategies, which made the results
ambiguous. To make fair comparison, we have modified
their original implementations 1 2 denoted as P2M* and
GEOMETRIC* to match our dataset and evaluated them in
the unified metric (rightmost 3 columns). Our framework
for achieving optimal results includes 1 global optimization
module and 1 adaptive optimization module. As shown, our

1https://github.com/nywang16/Pixel2Mesh
2https://github.com/EdwardSmith1884/GEOMetrics without latent loss



Figure 5. Result comparison between GEOMetrics (left) and ours
(right). Our method faithfully subdivides corners or other detail
areas while GEOMetrics’s subdivision areas are unstable. Mean-
while, our method has less self-intersection compared with GEO-
Metrics.

Metric Vertex Size Face Size F1 Score
P2M* 2466 4928 64.26
GEOMetrics* 558 1112 63.01
Ours(2a) 411 818 64.64
Ours(1g1a) 1026 2048 67.20
Ours(2g) 2562 5120 66.58

Table 2. The result of different module combinations. a and g stand
for adaptive refinement module and global refinement module re-
spectively.

network achieves much higher performance than previous
approaches and improves scores in all classes.

Qualitative reconstruction results for those having metic-
ulous structure are shown in Figure 7. We acquire highly ac-
curate reconstruction of the input objects effectively captur-
ing not only the global structure but local details. Figure 5
shows the subdivision result between GEOMetrics [29] and
ours. Compared to GEOMetrics which produces the am-
biguous and more self-intersection subdivision results, our
saliency guided subdivision network produces more pleas-
ing and stable results that concentrate on the corner or other
detail region.

(a) w/o oriented chamfer loss (b) w/ oriented chamfer loss

Figure 6. Visualize the effectiveness of the oriented chamfer loss,
the pink part stands for the reverse normal caused by intersection.

4.4. Structure Exploration

We make our model configurable and further explore the
performance under different configurations. The quantita-
tive results are shown in Table 2. We summarize the reasons

Category Ours (w/o oriented) Ours (w/ oriented)
(area / face / size) (area / face / size)

Chair 0.0808 / 0.0495 / 818 0.0483 / 0.0325 / 818

Table 3. MIR comparison of the oriented chamfer loss

Category GEOMetrics* Ours (w/ oriented)
(area / face / size) (area / face / size)

Mean 0.2382 / 0.3151 / 1112 0.0951 / 0.0733 / 818

Table 4. MIR for GEOMetrics* and our method

for this result. The global refinement module enforces the
smoothness and edge length constraint which suppresses
the growth of high detailed regions and the adaptive refine-
ment module increases the vertices in more sharp areas like
edges or corners. The result reveals that too few vertices
and faces fail to well capture the global structure, while too
much global refinement modules hinder the representation
of local details. Since one global and one adaptive refine-
ment modules take a good balance of both, therefore obtain-
ing the best performance.

The vertex and face number can be easily computed
since each global subdivision module generates 4 new faces
from each original face and each adaptive subdivision mod-
ule generates one new vertex from one-fifth of original
edges described in Section 3.5. Figure 1 reveals that the pro-
posed saliency guided subdivision architecture brings about
stunning results with few faces compared to the global sub-
division method.

4.5. Ablation Study

To validate the effectiveness of the oriented chamfer loss,
we first evaluate the proposed model using 2 adaptive re-
finement modules on single chair category. The quantitative
results in Table 3 shows that the intersection ratio and size
decrease significantly with the oriented chamfer loss. Area
and face represent intersection face area ratio and face num-
ber ratio, respectively. Size denotes the average face num-
ber for each class. The quality result in Figure 6 demon-
strates that the oriented chamfer loss mitigates the problem
of surface overlap effectively.

We further compare our model with 2 adaptive subdivi-
sion module against GEOMetrics*. The results are shown
in Table 4 depicts that our model produces fewer faces but
gets far fewer intersection ratio.

5. Conclusions
In this paper, we propose a novel adaptive subdivision ar-

chitecture for mesh reconstruction guided by saliency points
which take advantage of both representations and achieve
the trade-off between detail generation and memory con-



(a) GroundTruth (b) Pixel2Mesh[34] (c) GEOMetrics[29] (d) Ours

Figure 7. Qualitative results by our network. Compare to Pixel2Mesh* and GEOMetrics*, our method generates meshes with better details.

sumption. The proposed oriented chamfer loss significantly
reduce the self-intersection phenomenon. The experiments
demonstrate that our method can not only produce more vi-
sually appealing results but also achieve better performance
compared to the state-of-the-art methods.
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