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ABSTRACT

We present a novel end-to-end plane detection and description net-
work named SuperPlane to detect and match planes in two RGB
images. SuperPlane takes a single image as input and extracts 3D
planes and generates corresponding descriptors simultaneously. A
mask-attention module and an instance-triplet loss are proposed
to improve the distinctiveness of the plane descriptor. For image
matching, we also propose an area-aware Kullback-Leibler (KL)
divergence retrieval method. Extensive experiments show that the
proposed method outperforms state-of-the-art methods and retains
good generalization capacity. The applications in image-based local-
ization and augmented reality also demonstrate the effectiveness of
SuperPlane.

Index Terms:
Human-centered computing—Human computer interaction

(HCI)—Interaction paradigms—Mixed / augmented reality; Com-
puting methodologies—Artificial intelligence—Computer vision—
Computer vision problems

1 INTRODUCTION

Finding the correspondence between different views is a key prob-
lem in 3D vision tasks such as augmented reality (AR) applications
[2–4, 38] and image-based localization (IBL) task [7, 22, 31, 32, 34].
In AR applications, some virtual objects are often placed on the
extracted planes [15, 18]. The traditional plane extraction usually
follows this paradigm: triangulate the matched feature points to 3D
coordinate points from multiple views, and then estimate the planes’
parameters by clustering and expanding 3D points. However, it is
non-trivial to obtain enough matching feature points in challenging
conditions, such as textureless scenes (Fig. 1). Some methods di-
rectly perform depth estimation and then triangulate the plane, so
that virtual objects can be placed on the plane. But they cannot
differentiate semantically different areas. For example, the wall and
the door may have the same depth and there will be only one plane
detected, which is insufficient to realize the AR effect of hanging a
hat on the door. Human-made scenes generally contain rich planar
structures, and human perception of the world may be based on
individual planar features, rather than low-level feature points or
global image features. The mid-level feature such as plane structure
can simulate the way humans perceive the world to some extent.
In view of this, we highlight that plane detection and description
deserves more attention.

While in image-based localization (IBL) task, most existing meth-
ods utilize global [1, 20] or semantic [10, 23, 33] features which
are highly influenced by salient regions and sensitive to dynamic
objects [8], such as moving people, resulting to ambiguous matches.
Although SFRS [8] introduces image-to-region supervisions for
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Figure 1: Weak-texture challenge in man-made scenes. The left
shows the query image and the right shows the reference image [29].
Feature point based methods fail to extract enough matching points
to group the plane (the first row) while SuperPlane (the second row)
can directly detect the plane and generate the plane description. The
matched planes are indicated with the same color.

training image features in a self-supervised manner, it ignores multi-
region-to-multi-region supervision.

Recently, there has been several works [16, 17, 37, 39] to detect
planes from a single image. Note that all of them only emphasize
plane detection but ignore plane description. Even though Plane-
Match [28] introduces a RGB-D patch descriptor designed for de-
tecting coplanar surfaces for RGB-D reconstruction, but overlooks
the fact that even if it is a small patch, the patch may still consist
of multiple small planes, and using this patch directly to establish
constraints may cause some errors. It also fails to detect planes and
generates corresponding descriptors from a single image. These ex-
isting methods do not perform joint plane detection and description
due to quite a few challenging problems, such as how to determine
the number of planes and how to describe the detected planes. How
to construct data set to supervise plane detection and description is
also a critical issue.

For the problems aforementioned, we do the following analysis:
plane detection should be related to the object instance in the real
world. With the different images obtained, the number of planes
detected should also change. For plane descriptor, it should retrain
discriminative ability to handle viewpoint changes, even the illumi-
nation. We can follow the plane detection network such as Plan-
eRCNN [16] to detect the planes and construct the triplet samples
as supervision of the corresponding plane descriptors. The triplet
samples consist of the detected planes, not the complete images.

Based on the above considerations, we propose a novel framework
named SuperPlane (Fig. 2) to detect 3D planes and generate corre-
sponding descriptions from a single image. Our model can detect 3D
planes and generate the globally consistent descriptors handling the
illumination or large viewpoint changes. To the best of our knowl-
edge, we are the first attempt to detect 3D planes with description
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Figure 2: SuperPlane Framework. Our framework takes a single RGB image as input, and outputs the 3D planes and corresponding descriptors.
Our network consists of three sub-networks: a plane detection network (upper), a plane description network (bottom-right) and a joint warping
network (Fig. 3 left) respectively. The plane description network (bottom-left) is composed of a mask-attention module, 3 conv-layer, an average
pooling layer, a fully-Connected layer, intra-normalization, and L2 Normalization.

from a single image. In addition, due to the lack of available datasets
for training our framework, we introduce a Plane Description Bench-
mark (PDB). Furthermore, we propose a novel pipeline (Fig. 3) for
IBL task using our 3D plane detection and description network (Su-
perPlane). Different from the existing retrieval-based methods, they
directly use the global features of query and gallery images to cal-
culate the similarity between each other. We additionally use the
multi-plane descriptors to get the similarity of the two images. It
is non-trivial to merge the many-to-many plane similarity into the
similarity of two images. Kullback–Leibler Divergence (KL) is
generally utilized to estimate the average difference between the
distributions P and Q. We cast every plane descriptor of the image
as the distribution, and we can exploit the KL Divergence to estimate
the difference of the two images. Since our system detects planes
of different sizes, each plane has a different effect on the similarity
of the image. We expand the traditional KL divergence to Area-
Aware Kullback–Leibler Divergence similarity method to retrieve
the similar images, which shows better performance. Overall, our
contributions are summarised as four-fold.

• We propose a novel unified framework for simultaneously 3D
planes detection and description for a single image.

• We introduce a new training and test benchmark for plane
description from a single image and propose an instance-triplet
loss to train our model.

• We apply our SuperPlane to image-based localization task and
further introduce an Area-Aware Kullback–Leibler divergence
retrieval method to retrieve similar images.

• The proposed system outperforms previous state-of-the-art
methods on image-based localization benchmarks and demon-
strates significant generalization capability.

2 RELATED WORK

In this section, we briefly review the related methods.

2.1 Feature Extraction and Matching
Robust feature extraction and correct matching are particularly im-
portant in SLAM or AR applications. There exist several low-level
feature detectors and descriptors such as SIFT [21], ORB [26], Su-
perPoint [6], and so on. It is still a challenge to extract robust
features in weakly texture scenes, such as the white wall (Fig. 1 first
row). While high-level global or semantic features pay attention to
the whole feature, omitting the multi-region features. Human-made
environments generally contain rich planar regions, which are often
weakly or repeated textures. Furthermore, human perception and
understanding of the real world may be more from multiple planes
structure, and in AR application, the virtual objects are placed in the
planar surfaces [13]. Therefore, we argue that mid-level features,
such as plane detection and description, are necessary.

2.2 Plane Detection and Description
Recently several works of plane detection from a single image have
emerged. A pioneer work name PlaneNet [17] is proposed for end-to-
end planar reconstruction from a single RGB image. PlaneRecover
[37] casts the 3D plane recovery problem as a depth prediction
problem. However, the above two methods can only handle a fixed
amount of planes. While PlaneRCNN [16] based on Mask R-CNN
[11], performs a detection network to extract an arbitrary number of
planar regions. It further improves the accuracy of plane parameters
and depth map with the geometry constraints. PlanarReconstruction
[39] exploits pixel-wise embedding and proposes a fast mean-shift
clustering algorithm to group pixel embedding into plane instances.
It fails to generate the full planar descriptors. Note that all of them
only focus on plane detection but ignoring plane description. The
most similar work PlaneMatch [28] introduces an RGB-D patch
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Figure 3: Image-Based Localization Pipeline with SuperPlane. We use the SuperPlane network with shared weights to inference the planes
and descriptors of the query image and gallery image, respectively. Assume that the query image consists of m planes, and the gallery image
consists of n planes. We then calculate the distance between different image planes. In other words, it will form an m×n matrix. Then we use
Nearest Neighbor Search to get the index of the minimum similarity of each row, so that m pairs of matches can be formed. We regard each set of
matching planes as two discrete distributions P and Q, so that KL divergence can be used to measure the difference between two images. The
planes detected in each group of images are different, and we then propose an Area Aware KL divergence to measure the difference between
the two images. Finally, we add the global feature differences of the two images with multiple local planar feature differences to get the final
differences between the two images.

descriptor designed for detecting coplanar surfaces and uses the
plane constrain to improve RGB-D reconstruction. It fails to detect
planes and generates corresponding descriptors from a single integral
image. On the contrary, we introduce a novel framework to jointly
detect 3D planes and generate corresponding descriptors from a
single image.

2.3 Image-Based Localization
Image-based localization task is also considered Place Recogni-
tion. Image-based localization is proposed to identify reference
images captured at the same places from a geo-tagged database with
the given query image. Existing works can be divided into image
retrieval-based [1,8,20], per-position classification-based [12,35,36],
2D-3D registration-based [19, 27] methods. Our method generates
multiple planar descriptors, which are utilized to retrieve similar im-
ages. We, therefore, discuss related solutions that cast image-based
localization as an image retrieval task. NetVLAD [1] transformed
CNN features to local descriptors with learnable semantic centers
for localization by proposing a learnable VLAD layer. SARE [20]
further looked into effective metric learning to achieve better perfor-
mance. While SFRS [8] introduces the image-to-region supervisions
to mine difficult positive samples for more effective local feature
learning. Different from SFRS [8], we utilize multi-region-to-multi-
region supervisions to strengthen the discriminability of the feature
vectors.

3 METHODOLOGY

Our goal is to detect plane instances and generate corresponding
plane descriptors from a single RGB image. We propose a novel
framework with a multi-branch network to tackle this problem. Our
framework, named SuperPlane, consists of three main components
(see Fig. 2): a plane detection network, a plane description network
with a mask-attention module, and a cycle warping optimization
network (see Fig. 3 left). The plane detection network is similar to
PlaneRCNN [16]. The plane description network will be elaborated
in Sect. 3.2, while the cycle warping optimization network will
be demonstrated in Sect. 3.3 . We further apply our baseline to

image-based localization tasks and propose an Area-Aware Kullback-
Leibler Divergence Retrieval method to retrieve the more similar
images, which are highlighted in Sect. 3.6.1. In the following, we
will elaborate on the details of each section.

3.1 Plane Detection Network

Similar to [16], we use a plane detection network to detect the plane
instances in the image. As shown in Fig. 2, we throw an image into
the backbone model to obtain the feature map. The feature map is
used to infer the corresponding depth map and segmentation masks
of each planar region. For depth map, we use a U-Net structure
network to recover the depth value with skip connections between
Conv and Deconv layers. For the segmentation masks, we use the
RoIAlign layer to extract local region information, which is essential
for each instance mask inference.

3.2 Plane Description Network

Our framework extends the plane detection branch of PlaneRCNN.
It adds a plane description branch after a Region Proposal Network
(RPN) module [25], which is detailed in Fig. 2 (bottom). To ac-
quire the compact descriptor, the plane description branch exploits
a NetVLAD [1]-like module to represent a plane feature. After
obtaining the ROI [25] from RPN, we add three convolution layers,
followed by a global average pooling layer. The L2-normalized
(intra-normalization) converted the matrix generated from the Fully
connected layer into a vector, and finally L2-normalized in its en-
tirety. And the multiple plane descriptors will be required. Due to
the plane detection network that can generate the plane masks, we
further propose a mask-attention module to improve the descriptor,
which is demonstrated in Sect. 5.3.1. In the mask-attention module,
we multiply the feature map in front of the sigmoid layer with the
feature map after sigmoid by pixel by pixel to obtain the feature map
after the mask and then concatenate the feature map in front of the
sigmoid layer with the feature map after the mask. The reason is that
the previous paper [28] has shown that mask attention can enhance
the distinguishing ability of feature points to a certain extent.
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3.3 Cycle Warping Optimization Network
To train the plane descriptor, we develop a Siamese SuperPlane
with shared weights ( Fig. 3 left), and we construct a triplet sample
to pull the positive plane descriptor to the anchor plane descriptor,
whereas push the negative plane descriptor away from the anchor
plane descriptor. The supervision loss is called Instance-Triplet Loss
in Sect. 3.4.1. A cycle warping module is proposed to improve the
quality of plane detection and depth estimation ( Fig. 3 left).

Inspired by PlaneRCNN [16], we enforce the consistency of
reconstructed 3D planes between current view with nearby view
during training in cycle warping optimization network. Our Siamese-
SuperPlane framework takes two overlapped view images as input
and outputs multiple 3D Planes and corresponding descriptors. Note
that the pose of the two overlapped view images is known. Each
SuperPlane branch takes each frame as input and outputs a pixel-
wise depth map. Let Mc and Mn denote the 3D coordinate maps
of the current and nearby frames respectly. For every 3D point
Pc ∈ Mc in the current view, we exploit the pose information to
project to the nearby frame. And the bilinear interpolation is utilized
to read the 3D coordinate Pn from Mn. Based on the camera pose,
we transform Pn to the coordinate frame of the current view and
compute the 3D distance between the transformed coordinate Pc

t
and Pn. The 3D point Pn ∈Mn in the nearby view also exploits the
projection, un-projection, and coordinate frame transformation to
keep the consistency.

(a) current view (b) nearby view (c) IOU

Figure 4: Plane Description Benchmark. We warp the current frame
through a known pose to the adjacent frame, and then calculate the
overlap Intersection over Union (IOU) from the current frame to the
adjacent frame. The yellow part is the IOU after warping.

3.4 Loss Function
In this section, we mainly talk about the training loss to supervise
our SuperPlane framework. We exploit the plane detection loss in
PlaneRCNN [16], and propose an Instance-Triplet loss to train our
plane description branch. The plane detection training loss is briefly
summarized as follows.

Similar to Fast-RCNN [9], we use Lcls and Lreg losses for objects
detecting and coarse location regression. Lloc and Lmask losses are
used for fine location regression and binary mask predicting. For
specific information, please refer to [11].

For depth estimation, we also use the smooth L1 Loss:

Ldepth = ∑smoothL1(dgt ,dpt) (1)

where dgt means the ground-truth depth, while dpt means the pre-
dicted depth.

Due to our baseline generates several plane descriptors, we extend
standard Triplet loss to Instance−Triplet loss to train our plane de-
scription branch. The standard triplet loss function can be described
using a Euclidean distance function:

Ltriplet =∑
m
(max(|| f (Am)− f (Pm))||2−

|| f (Am)− f (Nm)||2 +α,0)) (2)

where Am is an anchor input, Pm is a positive input of the same class
as Am, Nm is a negative input of a different class from A. α is a
margin between positive and negative pairs, and f is an embedding
function. The standard triplet loss construct the image-level triplet,
which is a coarse way to learn the global image representation.

3.4.1 Instance Triplet Loss For Fine-Grained Retrieval
Traditional methods learn a descriptor for each image and construct
an image triplet to make the image-level descriptor more discrimina-
tive. However, this global matching strategy also lacks some detailed
information within an image. For our SuperPlane, we try to learn
more detailed information for similar image search. To achieve this
goal, we learn a descriptor for each plane instance. Moreover, we
propose a plane instance-level triplet loss for fine-grained discrim-
inative feature learning. We do not construct image-level triplets
among a training batch but construct the plane instance triplet within
an image. For each plane instance within an image, this strategy
enhances the discriminability of the plane descriptor. Thus, it can
make the discrete probability distribution more discriminative. So,
we can evaluate the KL Divergence of two plane descriptor distribu-
tions between images with more detailed information, which will
lead to better performance. Our Instance Triplet Loss randomly
selects different plane matching pairs of a set of images for supervi-
sion, the negative plane is randomly chosen, which can obtain more
supervision information:

LInstance−Triplet =∑
m

1
k

k

∑
i, j
(max(|| f (Ai)− f (Pi))||2−

|| f (Ai)− f (N j)||2 +α,0)) (3)

where i means the index of the matched planes and j is the random
index except for the anchor and positive plane. We do not use the
fixed triplet sample, which may contain arbitrary triplet samples,
such as hard samples. To reconstruct enough semi-hard samples to
train the framework, we propose a selection mechanism, which will
be argued in Sect. 3.5.

Finally, the total loss function of our system is defined as follows:

Ltotal =λ1LRPN +λ2Lloc +λ3Lmask+

λ4Ldepth +λ5LInstance−Triplet (4)

3.5 Plane Description Benchmark
To train our SuperPlane, we use the processed ScanNet [5] data from
PlaneRCNN [16] and select training triplets by following steps.

• First, we keep the plane indices generated from PlaneRCNN
[16]. Directly using every 20 adjacent frames in PlaneRCNN
[16] to extract matching pairs may result in some easy samples,
so we warp the current frame through a known pose to the
adjacent frame, and then calculate the overlap Intersection
over Union (IOU) from the current frame to the adjacent frame,
as shown in Fig. 4.

• Second, with the computed IOU, we can divide the data set into
three levels: simple(0.7-1.0), semi-hard(0.4-0.7), and hard(0.1-
0.4). We mainly do experiments on semi-hard data sets. For
all scenes in Scannet [5], we follow the Scannet train/val/test
split metric. For a single scene, we also split the dataset to
train/val/test subset with ratio 90%, 5%, 5%.

• Therefore, for every image pairs, it has multi-corresponding
planes. Each pair contains a corresponding match (plane in-
dices – plane indices), the relative pose, and the camera pose of
each image. Every plane consists of plane parameters (such as
Normal N and Offset d), mask information, depth, and global
plane indices.
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Table 1: Comparison with state-of-the-arts on image-based localization benchmarks. Note that the network is only trained on the proposed
Plane Description Benchmark (PDB-train) and directly evaluate on Tokyo 24/7, Pitts250k-test and Pitts30k-test datasets. Our method outperforms
existing state-of-the-art methods. We mark best results bold.

Tokyo 24/7 [31] Pitts250k-test [31] Pitts30k-test [31]
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

NetVLAD [1] 73.33 82.86 86.03 85.95 93.20 95.13 80.5 91.8 95.2
CRN [14] 75.20 83.80 87.30 85.50 93.50 95.50 - - -

SARE [20] 79.68 86.67 90.48 88.97 95.50 96.79 - - -
SFRS [8] 85.40 91.11 93.33 90.68 96.39 97.57 89.38 94.70 95.88

Ours 85.71 92.38 93.02 90.62 96.47 97.67 89.48 94.73 96.01

Table 2: Comparison with state-of-the-arts on depth estimation benchmarks. We evaluate the depth estimation on the ScanNet [5] dataset
with state-of-the arts methods. Our method is slightly better than PlaneRCNN [16]. We mark best results bold.

Lower the better (LTB) Higher the better (HTB)
Rel Rel(sqr) log10 RMSE RMSElog 1.25 1.252 1.253

PlaneRCNN [16] 0.139 0.063 0.064 0.329 0.183 0.784 0.955 0.994
Ours 0.137 0.063 0.061 0.319 0.177 0.810 0.963 0.990

3.6 Image-Based Localization Pipeline
The retrieval-based image localization method mainly takes this
paradigm: firstly, obtain the descriptor of the query image and the
gallery image, and then calculate the similarity between the query
and the gallery image to confirm whether the query image and the
gallery image are obtained under the same GPS. Our pipeline is
different from the existing scheme. What we obtain is not only the
global feature vector of a single image, but also the multiple plane
feature vectors of the image. We developed a strategy for integrating
multi-plane matching similarity into the similarity of the entire
image. As shown in Fig. 3, we first compute multi-plane descriptors
and the global feature from each image, and the covariance between
the query image and the gallery image is computed. We further
perform the nearest neighbor search to capture the most similar plane
for each plane in the query image. Then we will get the candidate
matching for each row in the covariance matrix. We aggregate the
multi-plane distances to a whole distance between two images with
the proposed Area-Aware Kullback-Leibler Divergence Retrieval
method. Finally, we add the global feature differences (from existing
global feature methods [1, 8, 20]) of the two images with multiple
local planar feature differences to get the final differences between
the two images.

3.6.1 Area-Aware Kullback-Leibler Divergence Retrieval
In mathematical statistics, the standard Kullback-Leibler divergence
is a measure of the difference between two probability distributions.
For discrete probability distribution P and Q define on the same
probability space, the Kullback–Leibler divergence from Q to P is
defined to be:

DKL(p||Q) = ∑
x∈X

P(x)log(
P(x)
Q(x)

). (5)

While retrieval-based IBL task can be cast as the Kullback-
Leibler divergence between the query image and the gallery images.
Our proposed SuperPlane can generate multiple plane descriptors
from a single image, so every plane descriptors can be naturally cast
as the discrete distribution. Since the area of each plane is different,
its importance is also different. We further propose an Area-Aware
Kullback-Leibler Divergence Retrieval to adjust the measure metric.
The metric can be designed as follow:

DArea−AwareKL(p||Q) = ∑
x∈X

Area(x)P(x)log(
P(x)
Q(x)

) (6)

where DKL(p||Q) means the distance of the plane descritor distribu-
tions between two images. Small distance mean they are similar and
vice versa.

4 IMPLEMENTATION DETAILS

Our framework is implemented by Pytorch [24], an imperative style,
high-performance deep learning library. We adopt the same frame-
work used in PlaneRCNN [16] and exploit a VLAD [1] layer for
encoding and aggregating plane feature descriptors. Different from
PlaneRCNN [16], we use the proposed PDB semi-hard dataset to
train the plane description branch. We first fixed the pretrained plane
detection branch in PlaneRCNN, and only train the plane description.
When the description branch is close to convergence, we do not fix
the plane detection branch and continue training until the network
converges. Our model is trained by 600 iterations with a fixed plane
detection branch, and further trained to 1200 iterations. The Adam
algorithm is utilized to optimize the loss function, with a constant
learning rate 1e-4, momentum 0.99, and weight decay 0.0001.

5 EXPERIMENTS

We conduct the experiments in five aspects: ablation studies of our
proposed framework on the proposed Plane Description Benchmark
(PDB), comparison with state-of-the-art depth estimation methods
on the ScanNet benchmark, compared with the retrieval-based meth-
ods on several image-based localization Benchmark, generalization
capability and limitations and the application for AR with our Su-
perPlane.

5.1 Datasets
ScanNet [5] is a dataset of richly-annotated RGB-D scans of real-
world environments containing 2.5M RGB-D image in 1,513 scans
acquired in 707 distinct spaces. We followed the split metric of the
PlaneRCNN [16] to evaluate the performance of the depth estima-
tion.

Pittsburgh [31] is the unified IBL dataset that consists of a large
scale of panoramic images captured at different times and is associ-
ated with noisy GPS locations. The Pitts30k-val consists of 7, 608
queries and 10, 000 gallery images, and the Pitts250k-test contains
8, 280 probes and 83, 952 database images.

Tokyo 24/7 [30] is also widely used on IBL task. It is quite
challenging since the queries were taken in varying conditions.

In addition, to verify the power of our method, we further apply
our trained SuperPlane to IBL task and evaluate on Pitts30K-val,
Pitts250K-val, and Tokyo 24/7 dataset. Note that we do not train
on the above datasets. We follow the state-of-the-art retrieval-based
IBL method for a fair comparison.

5.2 Evaluation
We evaluate the plane matching of our method using precision and
recall metric on the proposed PDB dataset. Precision measures
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(a) Image (b) Depth (c) Segmentation (d) Matched planes (e) 3D map

Figure 5: Qualitative results of our method. Every two rows are a pair of images with the change of viewpoint. From left to right: RGB image,
depth map, segmentation, matched planes, and 3D map. The results demonstrate that our framework can yield stable plane detection and
maintain matching consistency in repeated texture scenes.

the plane matching result relevancy, while recall measures how
many truly plane matching relevant results are returned. For depth
estimation, we follow the same evaluation metric used in [16] to
evaluate the accuracy between the predicted depth map with the
ground-truth depth. On retrieval-based IBL tasks, we follow the
same evaluation metric proposed by [8], where the top-k recall is
measured. If at least one of the top-k retrieved reference images is
located within d=25 meters from the query image, it is determined
that the query image has been successfully retrieved from the top-k.

Table 3: Ablation studies on the proposed PDB dataset. The
baseline directly combines the Plane Detection Network of PlaneR-
CNN [16] and VLAD [1] layer. The second model reserves the base-
line, with additional mask attention module. Then we add the cycle
wraping module to improve the precision and recall.

method precision recall
baseline 0.7386 0.9123

+mask attention 0.7525 0.9332
+mask attention & cycle wraping 0.7864 0.9715

5.3 Ablation studies
5.3.1 Framework study
We utilize the proposed Plane Description Benchmark (PDB) for
optimizing our Siamese-like SuperPlane Network following the ex-
perimental setting of state-of-the-art Plane Detection methods [16].
To our best knowledge, we are the first to propose detecting 3D
planes and descriptions from a single image. Because we can not

find the same work, we only do experiments and report some results
on our PDB dataset. In the proposed Plane Description Bench-
mark (PDB), we perform precision and recall metrics to analyze
the effectiveness of the proposed method. Table 3 demonstrates
that the mask-attention module strengthens the plane descriptor’s
discriminate power. And the cycle warping optimization module
further improves the precision and recall values. The qualitative
results shown in Fig. 5 demonstrate that our framework can yield sta-
ble plane detection and maintain matching consistency in repeated
texture scenes. We also provide supplementary videos to show the
temporal consistency of our method in plane detection and matching.

5.3.2 Kullback-Leibler Divergence Study

In our image-based localization pipeline, we exploit two KL di-
vergence methods to retrieval the similar images. “Our w/o area
aware KL” is the baseline using the standard KL divergence. Fig. 6
demonstrates that the proposed Area Aware KL divergence outper-
forms standard KL divergence on Tokyo 24/7, Pitts250K-test and
Pitts30k-test datasets.

5.4 Comparison with state-of-the-art depth estimation
methods

We evaluate our depth estimation on the ScanNet dataset [5] and
compare with state-of-the-art depth estimation methods. PlaneR-
CNN [16] is the most relevant work. Table 2 demonstrates that
our method is generally better than PlaneRCNN [16]. The left five
columns show different depth error metrics including rooted-mean-
square-error (RMSE) and Related Difference (Rel) on the average
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(a) Tokyo 24/7 (b) Pitts250k-test (c) Pitts30k-test

Figure 6: Ablation studies for our proposed Area-Aware Kullback-Leibler Divergence with the standard Kullback-Leibler Divergence in our pipeline
on IBL tasks. Area-Aware KL method has a superior performance compared with the standard KL method.

(a) Query (b) Our top-1 (c) SFRS’s top-1 (d) Query matched planes (e) Our matched planes

Figure 7: Qualitative results for viewpoint and illumination changes of our method and state-of-the-art SFRS [8]. Compared with SFRS,
the retrieved results of our method can maintain good discrimination ability under large viewpoint or illumination changes. The first two rows are
for viewpoint changes while the last two rows are for illumination changes. The first column is the query image, the second column is our top1
retrieval results, the third column is SFRS’s top1 results, the last two columns are the matched planes between query image and our top1 results,
respectively. The same color indicates the matched planes.

per-pixel depth errors [17]. The lower the better. The right three
columns present the ratio of pixels for which the relative difference
between the ground truth depths and the predicted depths is below
the threshold. The higher the better.

5.5 Comparison with state-of-the-art retrieval-based
methods

We compare the proposed IBL Pipeline with state-of-the-art image
localization methods NetVLAD [1], CRN [14], SARE [20] and

SFRS [8] on localization datasets Pitts30k-test, Pitts250k-test, and
Tokyo 24/7 in this experiment. We combine the standard Kullback-
Leibler Divergence with our generated plane descriptors. We further
exploit Area-Aware Kullback-Leibler Divergence Retrieval method,
which has a superior performance compared with the standard
Kullback-Leibler Divergence method. Experimental results demon-
strate that our method outperforms the state-of-the-art methods, as
shown in Table 1. These methods extract a global feature from the
entire image which may be sensitive to dynamic objects, resulting
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(a) (b) (c) (d)

Figure 8: Single-plane detection for AR applications. We place the chair on the detected floor plane, as shown in (a) and (b). As the viewpoint
changes, our plane can be stably detected, and the resulting plane descriptor can maintain robust tracking. We apply texture mapping to the
detected floor plane, and the plane texture can be smoothly generated as the viewpoint changes, as shown in (c) and (d).

(a) (b) (c) (d)

Figure 9: Multi-planes detection for AR applications. Our method can detect multiple planes, which can support multiple virtual objects placing.
The plane detection and tracking are stable even the viewpoint is largely changed.

in false matches. Instead, our method is not only based on global
feature but local plane features in the background and is supposed
to be more robust to dynamic foreground.

For better understanding the superior performance of our method
on the IBL tasks, we show the retrieval image compared with SFRS
[8] with the given image. The recall top-1 images shown in Fig. 7
demonstrate that with the proposed method, our retrieval system
can handle large change with illumination or viewpoint. The rea-
son is two-fold. On the one hand, during the training process, the
images are selected according to the IOUs, which can cover large
viewpoint changes. In addition, the training dataset also contains
some illumination changes. On the other hand, our model implicitly
encodes various local cues including plane, contour and semantic
information, so it can handle complex scenes more robustly.

5.6 Generalization Ability and Limitations

Since our framework is only trained on the proposed Planar De-
scription Benchmark (PDB) and evaluated on several new datasets,
extensive experiments show that our method retains the significant
generalization capability on standard image retrieval tasks.

Our method assumes that the intrinsic parameters of the captured
images are known. If the gap between the ground-truth and the
given intrinsic parameters is large, it may cause inaccurate plane
detection and description. Also, if the number of planes is not
enough, the plane-based image matching accuracy may degrade.
We will explore self-supervised training methods and combine with
optical flow estimation to refine the matching accuracy in the future.

5.7 Application for Augmented Reality

We adopt some AR applications to show the Plane Detection and
Plane Description’s capability with our framework. Plane detection
is a basic task in AR applications, which is usually used to place
virtual objects. It is non-trivial for feature-based methods to capture

enough matching feature points to construct the planes in weakly-
texture scenes. However, our method can easily detect the multiple
planes and can support the user to conveniently place the target ob-
jects. In AR applications, long-term user interaction will inevitably
accumulate errors, and the system needs to automatically eliminate
errors. Commonly used solutions may be loop closure detection or
re-localization, where image retrieval is usually needed. As demon-
strated, our plane-based image retrieval method can handle weak
texture, repeated texture, perspective changes, illumination changes
and other challenge scenarios. As shown in Fig. 8 and Fig. 9, our
method yields stable plane matching results.

6 CONCLUSIONS AND FUTURE WORK

This paper introduces a novel framework named SuperPlane to detect
3D planes and generate corresponding descriptors from a single
image and build a new Plane Description Benchmark to facilitate
future research in this direction. The proposed Area-Aware Kullback-
Leibler divergence retrieval method gives rise to state-of-the-art IBL
results on Tokyo 24/7, Pitts250k and Pitts30k datasets. Through
the applications in image-based localization and augmented reality,
SuperPlane demonstrates the strong power of plane matching in the
challenge scenarios.

In the future, we will explore the self-supervised method to train
our network to mitigate the need of the given intrinsic parameters,
and combine with the optical flow estimation or other methods to
further refine the plane matching accuracy.
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